Tuesday, February 17, 2026

=?UTF-8?B?SGlzdG9yeSBvZiBDb2FzdGFsIEVyb3Npb24gYW5kIERpc2FzdGVyIFByZXZlbnRpb24gTWVhc3VyZXMgYWxvbmcgdGhlIFNlbmRhaSBCYXkgQ29hc3QgLSBGcm9tIHRoZSAxOTkwcyB0byB0aGUgMjAyMHMgMTk5MHM6IFdvcnNlbmluZyBDb2FzdGFsIEVyb3Npb24gYW5kIEluaXRpYWwgQ291bnRlcm1lYXN1cmVzIEFsb25nIHRoZSBTZW5kYWkgQmF5IGNvYXN0IGluIE1peWFnaSBQcmVmZWN0dXJlLCBkYW1hZ2UgZnJvbSBsb25nLXRlcm0gd2F2ZSBlcm9zaW9uIGFuZCBzdG9ybSBzdXJnZXMgd29yc2VuZWQsIGNhdXNpbmcgc2lnbmlmaWNhbnQgc2hvcmVsaW5lIHJldHJlYXQuIFBhcnRpY3VsYXJseSBhcm91bmQgTWF0c3VzaGltYSBCYXksIGFsb25nIHRoZSBjb2FzdHMgb2YgSXNoaW5vbWFraSBDaXR5LCBZYW1hbW90byBUb3duLCBhbmQgSXdhbnVtYSBDaXR5LCB0aGUgZGlzYXBwZWFyYW5jZSBvZiBzYW5keSBiZWFjaGVzIHdhcyBwcm9ncmVzc2luZywgaW1wYWN0aW5nIGZpc2hlcmllcywgdG91cmlzbSwgYW5kIHRoZSBsaXZpbmcgZW52aXJvbm1lbnQgb2YgbG9jYWwgcmVzaWRlbnRzLiBJbiByZXNwb25zZSwgdGhlIE1pbmlzdHJ5IG9mIExhbmQsIEluZnJhc3RydWN0dXJlLCBUcmFuc3BvcnQgYW5kIFRvdXJpc20gKE1MSVQpIGFuZCBNaXlhZ2kgUHJlZmVjdHVyZSBjb2xsYWJvcmF0ZWQgdG8gaW5pdGlhdGUgY291bnRlcm1lYXN1cmVzIGFpbWVkIGF0IHN1cHByZXNzaW5nIGN vYXN0YWwgZXJvc2lvbiBhbmQgc3RyZW5ndGhlbmluZyB3YXZlLWJyZWFraW5nIGZ1bmN0aW9ucy4gSW4gMTk5NywgdGhlICJTb3V0aGVybiBTZW5kYWkgQmF5IENvYXN0IERpcmVjdGx5IEFkbWluaXN0ZXJlZCBDb2FzdGFsIFByb3RlY3Rpb24gRmFjaWxpdHkgSW1wcm92ZW1lbnQgUHJvamVjdCIgY29tbWVuY2VkLCBwbGFubmluZyByZWluZm9yY2VtZW50IG9mIHNlYXdhbGxzIGFuZCB0aGUgaW5zdGFsbGF0aW9uIG9mIGFydGlmaWNpYWwgcmVlZnMgYW5kIG9mZnNob3JlIGJyZWFrd2F0ZXJzLiBTYW5kIHJlcGxlbmlzaG1lbnQgKHNhbmQgc3VwcGx5KSB3YXMgYWxzbyBpbnRyb2R1Y2VkIGV4cGVyaW1lbnRhbGx5IHRvIHByZXZlbnQgZXJvc2lvbi4gU2ltdWx0YW5lb3VzbHksIHJlc2VhcmNoIG9ic2VydmluZyBzZWRpbWVudCBtb3ZlbWVudCBhcm91bmQgY29hc3RhbCBzdHJ1Y3R1cmVzIGFsb25nIHRoZSBzb3V0aGVybiBTZW5kYWkgQmF5IGNvYXN0IHByb2dyZXNzZWQsIGFjY3VtdWxhdGluZyBmb3VuZGF0aW9uYWwgZGF0YSBmb3IgZWZmZWN0aXZlIGVyb3Npb24gY291bnRlcm1lYXN1cmVzLiBUaGlzIHJldmVhbGVkIGNoYW5nZXMgaW4gc2FuZCBtb3ZlbWVudCBwYXR0ZXJucyBjYXVzZWQgYnkgdGhlIGluc3RhbGxhdGlvbiBvZiBzdHJ1Y3R1cmVzIGFuZCBoaWdobGlnaHRlZCB0aGUgbmVjZXNzaXR5IGZvciBsb25nLXRlcm0gZXJvc2lvbiBjb3VudGVybWVhc3VyZXMuIDIwMTBzOiBUaGUgR3JlYXQg RWFzdCBKYXBhbiBFYXJ0aHF1YWtlIGFuZCB0aGUgUmVzdG9yYXRpb24gb2YgRGlzYXN0ZXIgUHJldmVudGlvbiBGb3Jlc3RzIFRoZSAyMDExIEdyZWF0IEVhc3QgSmFwYW4gRWFydGhxdWFrZSBjYXVzZWQgY2F0YXN0cm9waGljIGRhbWFnZSB0byBtYW55IGFyZWFzIGFsb25nIHRoZSBTZW5kYWkgQmF5IGNvYXN0bGluZSBkdWUgdG8gdGhlIHRzdW5hbWkuIEluIHBhcnRpY3VsYXIsIHRoZSBkaXNhc3RlciBwcmV2ZW50aW9uIGZvcmVzdHMgc3RyZXRjaGluZyBmcm9tIFdha2FiYXlhc2hpIFdhcmQgaW4gU2VuZGFpIENpdHkgdG8gTmF0b3JpIENpdHksIEl3YW51bWEgQ2l0eSwgYW5kIFlhbWFtb3RvIFRvd24gd2VyZSB3YXNoZWQgYXdheSwgc2lnbmlmaWNhbnRseSBhbXBsaWZ5aW5nIHRoZSB0c3VuYW1pJ3MgaW1wYWN0LiBGb2xsb3dpbmcgdGhlIGRpc2FzdGVyLCB1bmRlciB0aGUgbGVhZGVyc2hpcCBvZiB0aGUgRm9yZXN0cnkgQWdlbmN5LCBlZmZvcnRzIHRvIHJlZ2VuZXJhdGUgdGhlIGRpc2FzdGVyIHByZXZlbnRpb24gZm9yZXN0cyBwcm9ncmVzc2VkLCBhY2hpZXZpbmcgd2lkZXNwcmVhZCB2ZWdldGF0aW9uIHJlY292ZXJ5IGJ5IHRoZSAyMDIwcy4gRnVydGhlcm1vcmUsIGFzIHBhcnQgb2YgdGhlIHBvc3QtZGlzYXN0ZXIgcmVjb25zdHJ1Y3Rpb24gcGxhbiwgdGhlIFRvaG9rdSBSZWdpb25hbCBEZXZlbG9wbWVudCBCdXJlYXUgb2YgdGhlIE1pbmlzdHJ5IG9mIExhbmQsIEluZnJhc3RydWN0dXJlL CBUcmFuc3BvcnQgYW5kIFRvdXJpc20gZXhwYW5kZWQgdGhlICJTZW5kYWkgQmF5IFNvdXRoZXJuIENvYXN0IERpcmVjdGx5IEFkbWluaXN0ZXJlZCBDb2FzdGFsIFByb3RlY3Rpb24gRmFjaWxpdHkgSW1wcm92ZW1lbnQgUHJvamVjdCwiIGFkdmFuY2luZyB0aGUgcmVpbmZvcmNlbWVudCBvZiBjb2FzdGFsIGRpc2FzdGVyIHByZXZlbnRpb24gZmFjaWxpdGllcyB0byBwcmV2ZW50IHJlY3VycmVuY2Ugb2YgdHN1bmFtaSBkYW1hZ2UuIFRoaXMgaW5jbHVkZWQgdGhlIGluc3RhbGxhdGlvbiBvZiBuZXcsIGhpZ2hseSB3YXZlLXJlc2lzdGFudCBzZWF3YWxscywgc3RyZW5ndGhlbmluZyBkZWZlbnNlcyBhZ2FpbnN0IHN0b3JtIHN1cmdlcyBhbmQgdHN1bmFtaXMuIDIwMjBzOiBJbXBhY3RzIG9mIENsaW1hdGUgQ2hhbmdlIGFuZCBOZXcgQ2hhbGxlbmdlcyBFbnRlcmluZyB0aGUgMjAyMHMsIHNlYSBsZXZlbCByaXNlIGR1ZSB0byBjbGltYXRlIGNoYW5nZSBhbmQgdGhlIGZyZXF1ZW50IG9jY3VycmVuY2Ugb2YgZXh0cmVtZSB3ZWF0aGVyIGV2ZW50cyBlbWVyZ2VkIGFzIG5ldyBjaGFsbGVuZ2VzIGFsb25nIHRoZSBTZW5kYWkgQmF5IGNvYXN0LiBBIE1peWFnaSBQcmVmZWN0dXJlIHN1cnZleSBpbmRpY2F0ZWQgdGhhdCBlcm9zaW9uIHJhdGVzIHdlcmUgYWNjZWxlcmF0aW5nLCBwYXJ0aWN1bGFybHkgYWxvbmcgdGhlIGNvYXN0bGluZXMgb2YgWWFtYW1vdG8gVG93biBhbmQgSXdhbnVtYSBDaXR5LCBtYWtpbm cgaXQgaW5jcmVhc2luZ2x5IGRpZmZpY3VsdCBmb3IgZXhpc3Rpbmcgc2Vhd2FsbHMgYW5kIGFydGlmaWNpYWwgcmVlZnMgdG8gcHJvdmlkZSBhZGVxdWF0ZSBwcm90ZWN0aW9uLiBUbyBhZGRyZXNzIHRoaXMsIHRoZSBNaW5pc3RyeSBvZiBMYW5kLCBJbmZyYXN0cnVjdHVyZSwgVHJhbnNwb3J0IGFuZCBUb3VyaXNtIChNTElUKSBkZXZlbG9wZWQgbmV3IG1vbml0b3JpbmcgdGVjaG5vbG9naWVzIGFuZCBpbnRyb2R1Y2VkIHN5c3RlbXMgY2FwYWJsZSBvZiBhbmFseXppbmcgdGhlIHByb2dyZXNzaW9uIG9mIGNvYXN0YWwgZXJvc2lvbiBpbiByZWFsIHRpbWUuIEZ1cnRoZXJtb3JlLCBlbnZpcm9ubWVudGFsbHkgY29uc2Npb3VzIGNvbnN0cnVjdGlvbiBtZXRob2RzIGZvciBjb2FzdGFsIHByZXNlcnZhdGlvbiBoYXZlIGJlZW4gYWRvcHRlZCwgZXhwbG9yaW5nIGNvdW50ZXJtZWFzdXJlcyB0aGF0IGxldmVyYWdlIG5hdHVyYWwgcmVzaWxpZW5jZSByYXRoZXIgdGhhbiByZWx5aW5nIHNvbGVseSBvbiBjb25jcmV0ZSBzdHJ1Y3R1cmVzLiBDb21wYW5pZXMgc3VjaCBhcyBNaXRzdWJpc2hpIE1hdGVyaWFscyBhbmQgS2FqaW1hIENvcnBvcmF0aW9uIGFyZSBhbHNvIHdvcmtpbmcgb24gZGV2ZWxvcGluZyBzdXN0YWluYWJsZSBkaXNhc3RlciBwcmV2ZW50aW9uIGluZnJhc3RydWN0dXJlIGFsb25nIHRoZSBTZW5kYWkgQmF5IGNvYXN0LCBhZHZhbmNpbmcgdGhlIGludHJvZHVjdGlvbiBvZiBuZXcgdGVjaG5vbG9 naWVzLiBGb3IgZXhhbXBsZSwgc2FuZCBiZWFjaCBzdGFiaWxpemF0aW9uIHRlY2hub2xvZ3kgdXNpbmcgc3BlY2lhbCByZXNpbnMgYW5kIGNvYXN0YWwgZWNvc3lzdGVtIHJlc3RvcmF0aW9uIHByb2plY3RzIHV0aWxpemluZyBzZWF3ZWVkIGFyZSBiZWluZyBpbnRyb2R1Y2VkIG9uIGEgdHJpYWwgYmFzaXMu?=

History of Coastal Erosion and Disaster Prevention Measures along the Sendai Bay Coast - From the 1990s to the 2020s 1990s: Worsening Coastal Erosion and Initial Countermeasures Along the Sendai Bay coast in Miyagi Prefecture, damage from long-term wave erosion and storm surges worsened, causing significant shoreline retreat. Particularly around Matsushima Bay, along the coasts of Ishinomaki City, Yamamoto Town, and Iwanuma City, the disappearance of sandy beaches was progressing, impacting fisheries, tourism, and the living environment of local residents. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Miyagi Prefecture collaborated to initiate countermeasures aimed at suppressing coastal erosion and strengthening wave-breaking functions. In 1997, the "Southern Sendai Bay Coast Directly Administered Coastal Protection Facility Improvement Project" commenced, planning reinforcement of seawalls and the installation of artificial reefs and of
fshore breakwaters. Sand replenishment (sand supply) was also introduced experimentally to prevent erosion. Simultaneously, research observing sediment movement around coastal structures along the southern Sendai Bay coast progressed, accumulating foundational data for effective erosion countermeasures. This revealed changes in sand movement patterns caused by the installation of structures and highlighted the necessity for long-term erosion countermeasures. 2010s: The Great East Japan Earthquake and the Restoration of Disaster Prevention Forests The 2011 Great East Japan Earthquake caused catastrophic damage to many areas along the Sendai Bay coastline due to the tsunami. In particular, the disaster prevention forests stretching from Wakabayashi Ward in Sendai City to Natori City, Iwanuma City, and Yamamoto Town were washed away, significantly amplifying the tsunami's impact. Following the disaster, under the leadership of the Forestry Agency, efforts to regenerate the disa
ster prevention forests progressed, achieving widespread vegetation recovery by the 2020s. Furthermore, as part of the post-disaster reconstruction plan, the Tohoku Regional Development Bureau of the Ministry of Land, Infrastructure, Transport and Tourism expanded the "Sendai Bay Southern Coast Directly Administered Coastal Protection Facility Improvement Project," advancing the reinforcement of coastal disaster prevention facilities to prevent recurrence of tsunami damage. This included the installation of new, highly wave-resistant seawalls, strengthening defenses against storm surges and tsunamis. 2020s: Impacts of Climate Change and New Challenges Entering the 2020s, sea level rise due to climate change and the frequent occurrence of extreme weather events emerged as new challenges along the Sendai Bay coast. A Miyagi Prefecture survey indicated that erosion rates were accelerating, particularly along the coastlines of Yamamoto Town and Iwanuma City, making it increasing
ly difficult for existing seawalls and artificial reefs to provide adequate protection. To address this, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) developed new monitoring technologies and introduced systems capable of analyzing the progression of coastal erosion in real time. Furthermore, environmentally conscious construction methods for coastal preservation have been adopted, exploring countermeasures that leverage natural resilience rather than relying solely on concrete structures. Companies such as Mitsubishi Materials and Kajima Corporation are also working on developing sustainable disaster prevention infrastructure along the Sendai Bay coast, advancing the introduction of new technologies. For example, sand beach stabilization technology using special resins and coastal ecosystem restoration projects utilizing seaweed are being introduced on a trial basis.

Future Outlook Coastal erosion and disaster prevention measures along the Sendai Bay coastline have been continuously addressed throughout history. Starting with initial countermeasures in the 1990s, progress has been made while facing new challenges in each era: post-Great East Japan Earthquake reconstruction, and climate change adaptation in the 2020s. Going forward, strengthening sustainable coastal management and disaster prevention measures will be required, while deepening cooperation with local residents and fishing industry stakeholders.

仙台湾沿岸の海岸浸食と防災対策の歴史 - 1997年から2020年代まで

仙台湾沿岸の海岸浸食と防災対策の歴史 - 1997年から2020年代まで

1990年代:海岸浸食の深刻化と初期対策
宮城県の仙台湾沿岸では、長年にわたる波の侵食や高潮による被害が深刻化し、海岸線の後退が問題となっていた。特に、松島湾周辺や石巻市、山元町、岩沼市沿岸では、砂浜の消失が進行し、漁業や観光、地域住民の生活環境にも影響を及ぼしていた。

これを受け、国土交通省と宮城県が連携し、海岸浸食の抑制と防波機能の強化を目的とした対策を開始した。1997年には「仙台湾南部海岸直轄海岸保全施設整備事業」が始動し、防潮堤の補強工事や人工リーフ、離岸堤の設置が計画された。また、サンドリチャージ(砂の補給)による浸食防止も試験的に導入された。

同時に、仙台湾南部海岸では、海岸構造物周辺の土砂移動を観測する研究が進められ、効果的な侵食対策の基礎資料が蓄積された。これにより、構造物の設置による砂の移動パターンの変化や、長期的な侵食対策の必要性が明らかとなった。

2010年代:東日本大震災と防災林の復旧
2011年の東日本大震災では、津波によって仙台湾沿岸の多くの地域が壊滅的な被害を受けた。特に、仙台市若林区から名取市、岩沼市、山元町にかけての防災林が流失し、これにより津波の影響がさらに拡大した。震災後、林野庁主導のもと、防災林の再生が進められ、2020年代までに広範囲での植生回復が行われた。

また、震災後の復興計画の一環として、国土交通省東北地方整備局は「仙台湾南部海岸直轄海岸保全施設整備事業」を拡大し、津波被害の再発防止に向けた海岸防災施設の強化を進めた。この中で、新たに耐波性の高い防潮堤の設置が進められ、高潮や津波に対する備えが強化された。

2020年代:気候変動の影響と新たな課題
2020年代に入ると、仙台湾沿岸では気候変動の影響による海面上昇や異常気象の頻発が新たな課題として浮上した。宮城県の調査によると、特に山元町や岩沼市の海岸線では侵食速度が増加し、既存の防潮堤や人工リーフでは十分な対応が困難になってきていることが指摘された。

これに対応するため、国土交通省は新たなモニタリング技術の開発を進め、海岸浸食の進行状況をリアルタイムで分析できるシステムを導入した。さらに、海岸保全のための環境配慮型工法が導入され、コンクリート構造物に頼らず、自然の回復力を活かした対策が模索されている。

また、三菱マテリアルや鹿島建設などの企業が、仙台湾沿岸における持続可能な防災インフラの開発に取り組んでおり、新技術の導入も進められている。たとえば、特殊な樹脂を使用した砂浜安定化技術や、海藻を活用した沿岸生態系回復プロジェクトなどが試験的に導入されている。

今後の展望
仙台湾沿岸の海岸浸食と防災対策は、これまでの歴史を通じて継続的に取り組まれてきた。1990年代の初期対策から始まり、東日本大震災後の復興、そして2020年代の気候変動対応と、時代ごとに新たな課題に直面しながら改善が進められている。今後も、地域住民や漁業関係者との協力を深めながら、持続可能な海岸管理と防災対策の強化が求められる。

The Shadow of the City Pushed Toward the Sea: Tokyo, 1960–1975 The difficulty in securing final disposal sites stems not only from a lack of land. As the division of labor solidifies—where waste generated daily in the city center is ultimately transported to the city's outskirts for landfill—the distance between the source and disposal sites widens, intensifying the burden imbalance. Transportation becomes longer-distance, increasing costs and traffic burden, while the receiving areas bear the brunt of foul odors, pests, deteriorating landscapes, and anxieties over leachate and gases. Thus, waste is pushed to less visible locations, yet the seeds of conflict spread throughout the entire city.

The Shadow of the City Pushed Toward the Sea: Tokyo, 1960–1975 The difficulty in securing final disposal sites stems not only from a lack of land. As the division of labor solidifies—where waste generated daily in the city center is ultimately transported to the city's outskirts for landfill—the distance between the source and disposal sites widens, intensifying the burden imbalance. Transportation becomes longer-distance, increasing costs and traffic burden, while the receiving areas bear the brunt of foul odors, pests, deteriorating landscapes, and anxieties over leachate and gases. Thus, waste is pushed to less visible locations, yet the seeds of conflict spread throughout the entire city.

During Tokyo's period of rapid economic growth, waste volumes exploded. If incineration facility development couldn't keep pace, the fundamental process of burning to reduce volume before burial breaks down. More waste goes to landfill, rapidly depleting remaining capacity. The underlying structure where delays in facility development and operation easily lead to critical shortages as a social problem remains unchanged. Alongside land scarcity, another major barrier is consensus building. While disposal sites enhance safety through technologies like waterproofing and drainage systems, residents retain the sense that once waste is accepted, it cannot be reversed. Concerns about impacts on water sources, future leakage risks, and reputational damage cannot be dispelled by numerical explanations alone. As opposition intensifies during the candidate site presentation and survey stages, causing plans to stall, requests for extensions and interregional waste transfers become repeti
tive, further amplifying the uneven distribution of the burden.

In Tokyo, this imbalance surfaced around 1971. Koto Ward suffered from foul odors and flies at sites like Yumenoshima, fueling frustration over the lack of progress in local waste processing. Meanwhile, in Suginami Ward, opposition to building a waste incineration plant spread, escalating into the so-called "garbage wars." Tensions rose within the city over the responsibility between disposal sites and waste-generating areas.

In large cities, securing land inland is difficult, making marine disposal sites crucial receptacles. New marine disposal sites were developed in Tokyo Port, implementing temporary measures to extend their lifespan. However, this too was not a permanent solution. The intertwined issues of volume, location, and consensus repeatedly made securing disposal sites difficult. The waste did not disappear from the city; it was merely moved to less visible locations.

海へ押し出される街の影 東京 1960年から1975年

海へ押し出される街の影 東京 1960年から1975年

最終処分場の確保が難題になるのは、土地が足りないからだけではありません。都市の中心で毎日生まれるごみが、最終的には都市の外縁へ運ばれ、そこで埋め立てられるという分業が固定されると、発生地と処分地の距離が広がり、負担の偏りが強まります。運搬は長距離化して費用と交通負荷が増え、受け入れ側には悪臭や害虫、景観の悪化、浸出水やガスへの不安が集中します。こうしてごみは見えにくい場所へ追いやられますが、対立の火種は、むしろ都市全体に広がります。

高度経済成長期の東京では、ごみの量が爆発的に増えました。焼却施設の整備が追いつかなければ、燃やして減らしてから埋めるという基本動作が崩れ、埋立に回る量が増え、処分場の残余容量は急速に縮みます。施設整備と運用が遅れた時代には、逼迫が社会問題化しやすい構造そのものは変わりません。

用地不足に並ぶもう一つの壁が、合意形成です。処分場は遮水や集排水などの技術で安全性を高めますが、住民の側から見れば、一度受け入れれば戻れないという感覚が残ります。水源への影響や将来の漏えいリスク、風評被害への恐れは、数字の説明だけでは消えません。候補地の提示や調査の段階で反対が強まり、計画が停滞するほど、延命要請や広域搬入が繰り返され、負担の偏りがさらに増幅されます。

東京では、一九七一年年前後にこの偏りが表面化しました。江東区は夢の島などで悪臭やハエに悩まされ、自区内処理が進まないことへの不満を募らせました。一方、杉並区では清掃工場建設をめぐる反対運動が広がり、いわゆるごみ戦争へと発展します。都市の内部で、処分地と発生地の責任をめぐる緊張が高まりました。

大都市では内陸部での用地確保が難しく、海面処分場が重要な受け皿になります。東京港では新海面処分場が整備され、延命措置が講じられました。しかし、それも恒久的な解決ではありません。量の問題、場所の問題、そして合意の問題が絡み合い、処分場確保の困難は繰り返されます。ごみは都市の外へ消えるのではなく、見えにくい場所へ移されるだけなのです。

=?UTF-8?B?VGhlIFNoYWRvdyBvZiB0aGUgQ2l0eSBQdXNoZWQgVG93YXJkIHRoZSBTZWE6IFRva3lvLCAxOTYw4oCTMTk3NSBTZWN1cmluZyBmaW5hbCBkaXNwb3NhbCBzaXRlcyBoYXMgYWx3YXlzIGJlZW4gYSBtYWpvciBjaGFsbGVuZ2UgZm9yIHVyYmFuIGFkbWluaXN0cmF0aW9uLiBEdXJpbmcgVG9reW8ncyBwZXJpb2Qgb2YgcmFwaWQgZWNvbm9taWMgZ3Jvd3RoLCB0aGUgdm9sdW1lIG9mIHdhc3RlIHN1cmdlZCBkcmFtYXRpY2FsbHkuIFRoZSBleHBhbnNpb24gb2YgaW5jaW5lcmF0aW9uIGZhY2lsaXRpZXMgYW5kIGludGVybWVkaWF0ZSBwcm9jZXNzaW5nIGNvdWxkbid0IGtlZXAgcGFjZSwgbGVhZGluZyB0byBpbmNyZWFzZWQgcmVsaWFuY2Ugb24gbGFuZGZpbGwgc2l0ZXMuIEhvd2V2ZXIsIHdhc3RlIGdlbmVyYXRlZCBpbiB0aGUgY2l0eSBjZW50ZXIgaXMgcHVzaGVkIHRvIHRoZSBwZXJpcGhlcnkgd2hlbiBpdCBjb21lcyB0byBkaXNwb3NhbC4gVGhpcyBzZXBhcmF0aW9uIG9mIGdlbmVyYXRpb24gYW5kIGRpc3Bvc2FsIHNpdGVzIGNyZWF0ZXMgYSBzdHJ1Y3R1cmFsIHByb2JsZW0gb2YgdW5ldmVuIGJ1cmRlbiBkaXN0cmlidXRpb24uIExvbmdlciB0cmFuc3BvcnQgZGlzdGFuY2VzIGluY3JlYXNlIGNvc3RzIGFuZCB0cmFmZmljIGxvYWQsIHdoaWxlIGhvc3QgY29tbXVuaXRpZXMgYmVhciB0aGUgYnJ1bnQgb2Ygb2RvcnMsIHBlc3RzLCBsYW5kc2NhcGUgZGVncmFkYXRpb24sIGF uZCB3YXRlciBxdWFsaXR5IGNvbmNlcm5zLiBBcyBsYW5kZmlsbCBjYXBhY2l0eSBkaW1pbmlzaGVzLCBhdXRob3JpdGllcyBmYWNlIHByZXNzdXJlIHRvIGltcGxlbWVudCBsaWZlLWV4dGVuc2lvbiBtZWFzdXJlcyBvciBzZWVrIG5ldyBzaXRlcywgYnV0IGNhbmRpZGF0ZSBsb2NhdGlvbnMgb2Z0ZW4gZW5jb3VudGVyIHN0cm9uZyByZXNpZGVudCBvcHBvc2l0aW9uLiBEZWVwLXNlYXRlZCBzZW50aW1lbnRzIGFib3V0IHRoZSBpcnJldmVyc2liaWxpdHkgb2YgYWNjZXB0YW5jZSBhbmQgY29uY2VybnMgYWJvdXQgZnV0dXJlIGxlYWthZ2Ugcmlza3MgbWFrZSBjb25zZW5zdXMtYnVpbGRpbmcgZGlmZmljdWx0LiBBcm91bmQgMTk3MSwgdGhlIGNvbmZsaWN0IGJldHdlZW4gS290byBXYXJkLCBob21lIHRvIFl1bWVub3NoaW1hLCBhbmQgU3VnaW5hbWkgV2FyZCBvdmVyIHRoZSBwbGFubmVkIHdhc3RlIGluY2luZXJhdGlvbiBwbGFudCBzaXRlIGludGVuc2lmaWVkLCBlc2NhbGF0aW5nIGludG8gdGhlIHNvLWNhbGxlZCAiZ2FyYmFnZSB3YXIuIiBUaGlzIHdhcyBhIHN5bWJvbGljIGV2ZW50IHdoZXJlIHRoZSBwcm9ibGVtIG9mIGhvdyB0byBzaGFyZSB0aGUgYnVyZGVuIG9mIGRpc3Bvc2FsIHNpdGVzIHdpdGhpbiBjaXRpZXMgZXJ1cHRlZCBhcyBzb2NpYWwgdGVuc2lvbi4=?=

The Shadow of the City Pushed Toward the Sea: Tokyo, 1960–1975 Securing final disposal sites has always been a major challenge for urban administration. During Tokyo's period of rapid economic growth, the volume of waste surged dramatically. The expansion of incineration facilities and intermediate processing couldn't keep pace, leading to increased reliance on landfill sites. However, waste generated in the city center is pushed to the periphery when it comes to disposal. This separation of generation and disposal sites creates a structural problem of uneven burden distribution. Longer transport distances increase costs and traffic load, while host communities bear the brunt of odors, pests, landscape degradation, and water quality concerns. As landfill capacity diminishes, authorities face pressure to implement life-extension measures or seek new sites, but candidate locations often encounter strong resident opposition. Deep-seated sentiments about the irreversibility of
acceptance and concerns about future leakage risks make consensus-building difficult. Around 1971, the conflict between Koto Ward, home to Yumenoshima, and Suginami Ward over the planned waste incineration plant site intensified, escalating into the so-called "garbage war." This was a symbolic event where the problem of how to share the burden of disposal sites within cities erupted as social tension.

In large cities, securing vast inland sites is difficult, making marine disposal sites crucial receptacles. The reclamation of Tokyo Port also falls within this framework. However, this too is not a permanent solution. The intertwined issues of volume, location, and consensus make securing disposal sites a recurring challenge. Waste does not vanish beyond the city; it is merely moved to less visible locations, its shadow lingering deep within the urban structure.

海へ押し出される街の影 東京 1960年から1975年

海へ押し出される街の影 東京 1960年から1975年

最終処分場の確保は、常に都市行政の難題であった。高度経済成長期の東京では、ごみの量が急増し、焼却施設や中間処理の整備が追いつかず、埋立地への依存が強まった。しかし、都市の中心で発生するごみは、処分の段階になると周縁部へと押し出される。この発生地と処分地の分離は、負担の偏在という構造的問題を生み出す。運搬距離が延びるほど費用や交通負荷は増し、受け入れ地域には悪臭や害虫、景観悪化や水質への不安が集中する。

処分場の残余容量が減少すると、行政は延命措置や新規用地の探索を迫られるが、候補地では住民の強い反対が起こりやすい。一度受け入れれば後戻りできないという感情や、将来の漏えいリスクへの懸念が根強く、合意形成は容易ではない。1971年前後には、夢の島を抱える江東区と清掃工場建設予定地をめぐる杉並区との対立が激化し、いわゆるごみ戦争へと発展した。これは、都市内部で処分地の負担をどう分かち合うかという問題が、社会的緊張として噴出した象徴的な出来事であった。

大都市では内陸部での広大な用地確保が難しく、海面処分場が重要な受け皿となる。東京港の埋立地整備も、その延長線上にある。しかし、それも恒久的な解決ではない。量の問題、場所の問題、そして合意の問題が絡み合い、処分場確保の困難は繰り返される。ごみは都市の外へ消えるのではなく、見えにくい場所へ移されるだけであり、その影は都市構造の奥深くに残り続けるのである。

=?UTF-8?B?SlIgRnJlaWdodCBhbmQgTWl0c3VpIE8uUy5LLiBMaW5lcyBXZWF2aW5nIHRoZSBGdXR1cmXigJRUaGUgVHJhamVjdG9yeSBvZiBNb2RhbCBTaGlmdDogRGV2ZWxvcG1lbnRzIGZyb20gMjAwNyB0byB0aGUgMjAyMHMgSW4gMjAwNywgbW9kYWwgc2hpZnQgcHJvZ3Jlc3NlZCBpbiB0aGUgdHJhbnNwb3J0YXRpb24gaW5kdXN0cnksIHdpdGggdGhlIG1vZGFsIHNoYXJlIHJlY292ZXJpbmcgdG8gdGhlIDQwJSByYW5nZS4gTW9kYWwgc2hpZnQgcmVmZXJzIHRvIHRoZSB0cmFuc2l0aW9uIGZyb20gdHJ1Y2sgdHJhbnNwb3J0IHRvIHJhaWwgYW5kIHNlYSBzaGlwcGluZywgYW4gaW5pdGlhdGl2ZSBhaW1lZCBhdCBpbXByb3ZpbmcgZW5lcmd5IGVmZmljaWVuY3kgYW5kIHJlZHVjaW5nIENPMiBlbWlzc2lvbnMuIFRoaXMgbW92ZW1lbnQgd2FzIGEgcmVzcG9uc2UgdG8gdHJ1Y2sgZHJpdmVyIHNob3J0YWdlcyBhbmQgc3RyaWN0ZXIgZW52aXJvbm1lbnRhbCByZWd1bGF0aW9ucy4gSW4gcmFpbCBmcmVpZ2h0LCBKUiBGcmVpZ2h0IGV4cGFuZGVkIGl0cyAiRWNvIExpbmVyIiBzZXJ2aWNlLCB3aGlsZSBpbiBkb21lc3RpYyBzaGlwcGluZywgZWZmaWNpZW50IHRyYW5zcG9ydCBvZiB3YXN0ZSBhbmQgcHJvZHVjdHMgYmV0d2VlbiBtYWpvciBwb3J0cyBwcm9ncmVzc2VkLiBUaGlzIGxlZCB0byBhZHZhbmNlcyBpbiByZWR1Y2luZyB0aGUgZW52aXJvbm1lbnRhbCBpbXBhY3QgYW5kIGltcHJvdml uZyB0aGUgZWZmaWNpZW5jeSBvZiBKYXBhbidzIGxvZ2lzdGljcy4=?=

JR Freight and Mitsui O.S.K. Lines Weaving the Future—The Trajectory of Modal Shift: Developments from 2007 to the 2020s In 2007, modal shift progressed in the transportation industry, with the modal share recovering to the 40% range. Modal shift refers to the transition from truck transport to rail and sea shipping, an initiative aimed at improving energy efficiency and reducing CO2 emissions. This movement was a response to truck driver shortages and stricter environmental regulations. In rail freight, JR Freight expanded its "Eco Liner" service, while in domestic shipping, efficient transport of waste and products between major ports progressed. This led to advances in reducing the environmental impact and improving the efficiency of Japan's logistics.

During the 2010s, heightened environmental awareness both domestically and internationally spurred progress in logistics, including increased use of renewable energy and adoption of energy-saving technologies. Domestic shipping was strengthened at port facilities in Tokyo Bay and Osaka Bay, reducing truck usage for long-distance transport. Demand for rail freight grew for inter-city transport, further improving transport efficiency.

Entering the 2020s, modal shift has gained attention as a key to decarbonizing logistics. In 2021, Japan's rail freight volume reached approximately 20 million tons, with estimated CO2 reduction effects exceeding 1 million tons annually. At Tomakomai Port in Hokkaido, domestic ship transport of paper products expanded, achieving over 100,000 tons annually to Tokyo Port. Meanwhile, at Nagoya Port in Aichi Prefecture, maritime transport of automotive parts is progressing, with inter-company collaboration driving cost reductions. JR Freight has improved transport efficiency by introducing new rolling stock, while Mitsui O.S.K. Lines has introduced LNG (liquefied natural gas) for domestic vessels, achieving a 20% reduction in CO2 compared to conventional fuels. Furthermore, Nippon Express is promoting plans to shift long-distance transport from trucks to rail and ships. In waste transportation, there are increasing cases where CO2 emissions are reduced to about one-tenth of those
from trucks by transporting waste from Hokkaido to the Kanto region by rail. On the other hand, challenges remain, such as the limited number of rail freight trains and the aging of port facilities. The government is strengthening its support through the "Green Logistics Partnership Promotion Project" and aims to achieve carbon neutrality by 2050. Sources
- JR Freight "Eco Liner" service related materials - Mitsui O.S.K. Lines LNG introduction project materials - Ministry of Land, Infrastructure, Transport and Tourism "Green Logistics Partnership Promotion Project" overview (2020) - Hokkaido Tomakomai Port transportation efficiency case study (2021) - IPCC Sixth Assessment Report (2021) - Nippon Express long-distance transport shift plan (2020s)

JR貨物と商船三井が紡ぐ未来—モーダルシフトの軌跡-2007年から2020年代の展開

JR貨物と商船三井が紡ぐ未来—モーダルシフトの軌跡-2007年から2020年代の展開

2007年、輸送業界ではモーダルシフトが進み、化率が40%台に回復しました。モーダルシフトとは、トラック輸送から鉄道や海運に転換することで、エネルギー効率を向上させ、CO2排出を削減する取り組みです。この動きは、トラックドライバー不足や環境規制の強化に対応するものでした。鉄道貨物ではJR貨物が「エコライナー」サービスを拡充し、内航船では主要港間で廃棄物や製品の効率的な輸送が進みました。これにより、日本の物流は環境負荷低減と効率化が進展しました。

2010年代には、国内外で環境意識が高まり、物流分野でも再生可能エネルギーの利用や省エネルギー技術の導入が進展しました。東京湾や大阪湾の港湾施設で内航船輸送が強化され、長距離輸送におけるトラックの利用が減少。都市間輸送では鉄道貨物の需要が増加し、輸送効率のさらなる向上が図られました。

2020年代に入り、モーダルシフトは物流の脱炭素化の鍵として注目を集めています。2021年には、日本の鉄道貨物輸送量が約2000万トンに達し、CO2削減効果は年間100万トン以上と推定されています。北海道苫小牧港では内航船による紙製品輸送が拡大し、東京港への年間10万トン以上の輸送が実現。一方、愛知県名古屋港では、自動車部品の海上輸送が進み、企業間連携によるコスト削減が進展しています。

また、JR貨物は新型車両の導入で輸送効率を向上させ、商船三井は内航船にLNG(液化天然ガス)を導入し、従来の燃料より20%のCO2削減を達成しています。さらに、日本通運は長距離輸送でトラックから鉄道や船舶へシフトする計画を推進。廃棄物輸送では、北海道から関東地方への鉄道輸送でCO2排出量をトラックの約1/10に抑える事例も増えています。

一方で、鉄道貨物の運行本数の限界や港湾施設の老朽化といった課題も残されています。政府は「グリーン物流パートナーシップ推進事業」を通じて支援を強化し、2050年までのカーボンニュートラル実現を目指しています。

情報源
- JR貨物「エコライナー」サービス関連資料
- 商船三井 LNG導入プロジェクト資料
- 国土交通省「グリーン物流パートナーシップ推進事業」概要(2020年)
- 北海道苫小牧港の輸送効率化事例(2021年)
- IPCC第6次評価報告書(2021年)
- 日本通運 長距離輸送シフト計画(2020年代)

Yumenoshima: Tokyo Bay Landfill and the Memory of Pollution, 1957-1971 Yumenoshima is an artificial island in Tokyo Bay, Koto Ward, Tokyo. Formerly known as Tokyo Bay Landfill Site No. 14, it was used as a final waste disposal site. From 1957 to 1967, landfill operations progressed. At the time, the processing capacity of the waste treatment plant was insufficient, so food waste was buried without incineration, leading to advanced decay. Consequently, severe environmental pollution occurred in the surrounding areas, including foul odors, pests, gas emissions, and spontaneous combustion, creating such devastating damage that the area became known as a paradise for flies.

Yumenoshima: Tokyo Bay Landfill and the Memory of Pollution, 1957-1971 Yumenoshima is an artificial island in Tokyo Bay, Koto Ward, Tokyo. Formerly known as Tokyo Bay Landfill Site No. 14, it was used as a final waste disposal site. From 1957 to 1967, landfill operations progressed. At the time, the processing capacity of the waste treatment plant was insufficient, so food waste was buried without incineration, leading to advanced decay. Consequently, severe environmental pollution occurred in the surrounding areas, including foul odors, pests, gas emissions, and spontaneous combustion, creating such devastating damage that the area became known as a paradise for flies.

Yumenoshima's history dates back to before the war. Landfilling began in 1938 for the construction of the Tokyo City Airfield, but was halted due to the worsening war situation. After the war, in 1947, it was even used as a beach for a time. However, during the period of rapid economic growth, urban waste surged dramatically, leading to the site being selected once again as a landfill. The landfill became a social problem, causing not only foul odors and pest infestations, but also, in the 1960s, swarms of flies carried by the wind reaching as far as the southwestern part of Koto Ward. This necessitated pollution control measures, including scorched earth operations mobilizing police, fire departments, and the Self-Defense Forces.

The landfill problem stemmed from insufficient waste treatment facilities. Delays in establishing incineration plants meant large amounts of untreated organic waste were buried, increasing methane gas production and fire risks. This case exemplified the postwar challenges Tokyo faced with waste disposal and marked a turning point in sanitation and environmental administration.

Subsequently, landfill methods improved, shifting primarily to the disposal of incinerated ash. In 1978, Yumenoshima Park opened, developed on reclaimed land. Featuring sports facilities and a tropical plant house, it erased any trace of its past as a final waste disposal site and became a place of relaxation.

夢の島・東京湾埋立と公害の記憶 1957年から1971年

夢の島・東京湾埋立と公害の記憶 1957年から1971年

夢の島は東京都江東区の東京湾にある人工島で、かつては東京湾埋立14号地と呼ばれ、ごみ最終処分場として利用されていました。1957年から1967年にかけてごみの埋立が進み、当時は清掃工場の処理能力が追いつかず、生ごみを焼却せずにそのまま埋め立てたため腐敗が進行しました。結果、悪臭や害虫、ガス発生、自然発火といった深刻な環境公害が周辺地域で発生し、ハエの天国と呼ばれるほどの被害を生み出しました。

夢の島の歴史は戦前までさかのぼります。1938年に東京市飛行場の建設のため埋立が開始されましたが戦局悪化で中止され、その後終戦後の1947年に海水浴場として利用された時期もありました。しかし高度経済成長期になると都市のごみが急増し、再びこの地がごみ処分場として選ばれました。埋立地は社会問題化し、悪臭や害虫の発生のみならず、1960年代にはハエが風に乗って江東区南西部まで襲来する事態も起き、警察や消防、自衛隊を動員した焦土作戦など公害対策が行われるほどでした。

埋立問題は、ごみ処理施設の不足が背景にあります。焼却施設の整備が遅れたことで、大量の生ごみが未処理のまま埋め立てられ、メタンガスの発生や火災リスクが高まりました。この事例は、戦後東京が抱えた廃棄物処理の難しさと、衛生、環境行政の転換点でもありました。

その後、埋立方式は改善され、焼却後の灰を主に埋め立てる方法に移行しました。1978年には埋立地を公園として整備した夢の島公園が開園し、スポーツ施設や熱帯植物館などが設けられ、かつてのごみ最終処分場の面影を消し、憩いの場となっています。

=?UTF-8?B?WXVtZW5vc2hpbWE6IFRva3lvIEJheSBMYW5kZmlsbCBhbmQgdGhlIE1lbW9yeSBvZiBQb2xsdXRpb24sIDE5NTfigJMxOTcxIFl1bWVub3NoaW1hIGlzIGEgbGFuZGZpbGwgY3JlYXRlZCBpbiBUb2t5byBCYXksIEtvdG8gV2FyZCwgVG9reW8uIEl0IHdhcyB1c2VkIGFzIGEgZmluYWwgd2FzdGUgZGlzcG9zYWwgc2l0ZSBmcm9tIDE5NTcuIEF0IHRoZSB0aW1lLCBUb2t5byB3YXMgZW50ZXJpbmcgYSBwZXJpb2Qgb2YgcmFwaWQgZWNvbm9taWMgZ3Jvd3RoLCBhbmQgdGhlIHZvbHVtZSBvZiBnYXJiYWdlIHdhcyBpbmNyZWFzaW5nIGRyYW1hdGljYWxseS4gSG93ZXZlciwgdGhlIGRldmVsb3BtZW50IG9mIHdhc3RlIHRyZWF0bWVudCBwbGFudHMgYW5kIGluY2luZXJhdGlvbiBmYWNpbGl0aWVzIGNvdWxkIG5vdCBrZWVwIHBhY2UuIENvbnNlcXVlbnRseSwgYSBtZXRob2Qgd2FzIGFkb3B0ZWQgd2hlcmUgZm9vZCB3YXN0ZSB3YXMgbm90IGZ1bGx5IGluY2luZXJhdGVkIGJ1dCBzaW1wbHkgYnVyaWVkLiBUaGlzIGxlZCB0byBhZHZhbmNlZCBkZWNheSwgY2F1c2luZyBzZXZlcmUgZW52aXJvbm1lbnRhbCBwb2xsdXRpb246IGZvdWwgb2RvcnMsIG1hc3NpdmUgZmx5IGluZmVzdGF0aW9ucywgYW5kIHNwb250YW5lb3VzIGNvbWJ1c3Rpb24gZHVlIHRvIG1ldGhhbmUgZ2FzLiBUaGUgbGl2ZXMgb2YgbmVhcmJ5IHJlc2lkZW50cyB3ZXJlIGdyZWF0bHkgaW1wYWN0ZWQsIGFuZCBZdW1lbm9 zaGltYSBiZWNhbWUgYSBzeW1ib2wgb2YgdGhlIGNpdHkncyBpbmFkZXF1YXRlIHdhc3RlIHByb2Nlc3NpbmcgY2FwYWNpdHkuIFRoZSBpc3N1ZXMgZXZlbnR1YWxseSBlc2NhbGF0ZWQgaW50byByZWdpb25hbCBjb25mbGljdCwgY3VsbWluYXRpbmcgaW4gdGhlIHNvLWNhbGxlZCAiZ2FyYmFnZSB3YXIiIG9mIDE5NzEuIFRoaXMgYmVjYW1lIGEgdHVybmluZyBwb2ludCwgZm9yY2luZyBhIHJlZXZhbHVhdGlvbiBvZiB3YXN0ZSBtYW5hZ2VtZW50IHBvbGljaWVzLiBTdWJzZXF1ZW50bHksIHRoZSBsYW5kZmlsbCB0cmFuc2l0aW9uZWQgdG8gcHJpbWFyaWx5IGJ1cnlpbmcgaW5jaW5lcmF0ZWQgYXNoLCBhbmQgZW52aXJvbm1lbnRhbCBtZWFzdXJlcyB3ZXJlIHN0cmVuZ3RoZW5lZC4gVG9kYXksIFl1bWVub3NoaW1hIFBhcmsgc3RhbmRzIGFzIGEgcXVpZXQgcGxhY2UgY29udmV5aW5nIHRoZSBoaXN0b3J5IG9mIHBhc3QgcG9sbHV0aW9uIGFuZCB0aGUgY2l0eSdzIGxlYXJuaW5nIHByb2Nlc3MuIA==?=

Yumenoshima: Tokyo Bay Landfill and the Memory of Pollution, 1957–1971 Yumenoshima is a landfill created in Tokyo Bay, Koto Ward, Tokyo. It was used as a final waste disposal site from 1957. At the time, Tokyo was entering a period of rapid economic growth, and the volume of garbage was increasing dramatically. However, the development of waste treatment plants and incineration facilities could not keep pace. Consequently, a method was adopted where food waste was not fully incinerated but simply buried. This led to advanced decay, causing severe environmental pollution: foul odors, massive fly infestations, and spontaneous combustion due to methane gas. The lives of nearby residents were greatly impacted, and Yumenoshima became a symbol of the city's inadequate waste processing capacity. The issues eventually escalated into regional conflict, culminating in the so-called "garbage war" of 1971. This became a turning point, forcing a reevaluation of waste management policies
. Subsequently, the landfill transitioned to primarily burying incinerated ash, and environmental measures were strengthened. Today, Yumenoshima Park stands as a quiet place conveying the history of past pollution and the city's learning process.

夢の島・東京湾埋立と公害の記憶 1957年から1971年

夢の島・東京湾埋立と公害の記憶 1957年から1971年

夢の島は東京都江東区の東京湾に造成された埋立地で、1957年から本格的にごみ最終処分場として利用された。当時の東京は高度経済成長の入り口にあり、ごみの量が急増していたが、清掃工場や焼却施設の整備は追いついていなかった。そのため、生ごみを十分に焼却せずにそのまま埋め立てる方法が取られ、腐敗が進行し、悪臭やハエの大量発生、メタンガスによる自然発火など深刻な環境公害が発生した。周辺住民の生活は大きな影響を受け、夢の島は都市の処理能力不足を象徴する場所となった。問題はやがて地域間の対立へと発展し、1971年にはいわゆるごみ戦争が起き、廃棄物行政の見直しが迫られる転機となった。その後、焼却後の灰を中心に埋め立てる方式へ移行し、環境対策が強化される。現在の夢の島公園は、かつ�
��の公害の歴史と都市の学習過程を静かに伝える場となっている。

Uncontainable Threat: Cases of Illegal Medical Waste Dumping Specific cases of illegal medical waste dumping in the 2020s include the following:

Uncontainable Threat: Cases of Illegal Medical Waste Dumping Specific cases of illegal medical waste dumping in the 2020s include the following:

1. Improper Handling of Infectious Waste by a Waste Disposal Company (2024) In 2024, it was revealed that a waste disposal company had improperly handled infectious waste, such as placentas and blood, leaving it unattended for an extended period. The company had falsely reported that it had "processed" the waste, leading to direct questioning of its president.

2. Illegal dumping by an industrial waste collection and transport operator (2022) In 2022, an industrial waste collection and transport operator transported unauthorized industrial waste (sludge) and illegally dumped it in forested areas. This act violated the Waste Management and Public Cleansing Act as an unauthorized change to the scope of business operations.

With the spread of COVID-19, the volume of medical waste has increased, demanding proper disposal. In particular, improper handling of infectious waste can increase infection risks and cause environmental pollution. Illegal dumping of medical waste is severely punished under the Waste Management and Public Cleansing Act. Those who illegally dump waste may face up to five years imprisonment or a fine of up to 10 million yen.

It is crucial for medical institutions and disposal operators to thoroughly implement proper waste separation and disposal, and to select reliable disposal contractors. Furthermore, efforts must be made to prevent illegal dumping by appropriately managing and monitoring the disposal status of waste. Sources: - Tokyo Metropolitan Government Bureau of Environment - Illegal Dumping Cases https://www.kankyo.metro.tokyo.lg.jp/resource/industrial_waste/improper_handling/case
- Illegal Dumping of Infectious Medical Waste (YouTube) https://www.youtube.com/watch?v=mlMnS-xPBbM - Report on Proper Treatment of Infectious Medical Waste (ISAD) https://www.isad.or.jp/wp/wp-content/uploads/2021/12/no146_21p.pdf

封じられぬ脅威──医療廃棄物の不法投棄事例

封じられぬ脅威──医療廃棄物の不法投棄事例

2020年代における医療廃棄物の不法投棄の具体的な事例として、以下のものがあります。

1. 廃棄物処理会社による感染性廃棄物の不適切処理(2024年)
2024年、ある廃棄物処理会社が、胎盤や血液などの感染性廃棄物を適切に処理せず、長期間放置していたことが明らかになりました。同社は「処理した」と虚偽の報告を行っており、社長への直撃取材が行われました。

2. 産業廃棄物収集運搬業者による不法投棄(2022年)
2022年、産業廃棄物収集運搬業者が、許可を受けていない産業廃棄物(汚泥)を運搬し、山林に不法投棄する事案が発生しました。この行為は、事業範囲の無許可変更として廃棄物処理法に違反するものです。

新型コロナウイルス感染症の拡大に伴い、医療廃棄物の発生量が増加し、適切な処理が求められています。特に、感染性廃棄物の不適切な処理は、感染リスクの増加や環境汚染を引き起こす可能性があります。

医療廃棄物の不法投棄は、廃棄物処理法により厳しく罰せられます。不法投棄を行った場合、5年以下の懲役または1000万円以下の罰金が科せられる可能性があります。

医療機関や処理業者は、適切な廃棄物の分別・処理を徹底し、信頼できる処理業者を選定することが重要です。また、廃棄物の処理状況を適切に管理・監視することで、不法投棄の防止に努める必要があります。

情報源:
- 東京都環境局 - 不法投棄事例
https://www.kankyo.metro.tokyo.lg.jp/resource/industrial_waste/improper_handling/case
- 感染性医療廃棄物の不法投棄(YouTube)
https://www.youtube.com/watch?v=mlMnS-xPBbM
- 感染性医療廃棄物の適正処理に関する報告書(ISAD)
https://www.isad.or.jp/wp/wp-content/uploads/2021/12/no146_21p.pdf

Monday, February 16, 2026

=?UTF-8?B?RGlzcG9zYWJsZSBEaWFwZXIgV2FzdGUgSXNzdWVzIGFuZCBTb2x1dGlvbnMgLSBKYW51YXJ5IDIwMTEgVGhlIGluY3JlYXNpbmcgdm9sdW1lIG9mIGRpc3Bvc2FibGUgZGlhcGVyIHdhc3RlIGdlbmVyYXRlZCBieSBudXJzaW5nIGZhY2lsaXRpZXMgYW5kIGhvc3BpdGFscyBoYXMgYmVjb21lIHByb2JsZW1hdGljIGR1ZSB0byBDTzIgZW1pc3Npb25zIGR1cmluZyBpbmNpbmVyYXRpb24gYW5kIHRoZSBidXJkZW4gb24gaW5jaW5lcmF0b3JzIGNhdXNlZCBieSBoaWdoIG1vaXN0dXJlIGNvbnRlbnQuIE1lYW53aGlsZSwgcmVjeWNsaW5nIHRlY2hub2xvZ2llcyBmb3IgcmVjb3ZlcmluZyBjZWxsdWxvc2UgZmliZXJzIGFuZCBpbXByb3ZlbWVudHMgaW4gdGhlIGVmZmljaWVuY3kgb2Ygc2VwYXJhdGUgY29sbGVjdGlvbiBhcmUgYWR2YW5jaW5nLiBUaGUgTmF0aW9uYWwgSW5zdGl0dXRlIGZvciBFbnZpcm9ubWVudGFsIFN0dWRpZXMgYWltcyB0byByZWN5Y2xlIHRoZW0gaW50byByZW5ld2FibGUgcmVzb3VyY2VzIHVzaW5nIGJpb3JlZmluZXJ5IHRlY2hub2xvZ3ksIHdoaWxlIFVuaWNoYXJtIGlzIHRlc3RpbmcgdGhlIHVzZSBvZiBiaW9kZWdyYWRhYmxlIHBvbHltZXJzLiBGdXJ0aGVybW9yZSwgdGhlcmUgaXMgYSBncm93aW5nIG5lZWQgaW4gSmFwYW4gZm9yIGEgc3lzdGVtIGRlc2lnbiBtb2RlbGVkIGFmdGVyIEdlcm1hbnkncyBQYWNrYWdpbmcgUmVjeWNsaW5nIEFjdC4gQnVpbGR pbmcgYSBjaXJjdWxhciBlY29ub215IGF0IHRoZSBsb2NhbCBsZXZlbCBhbmQgaW50cm9kdWNpbmcgdHJhY2VhYmlsaXR5IHdpbGwgYmUga2V5IHRvIGFjaGlldmluZyBzdXN0YWluYWJsZSBzb2x1dGlvbnMuIA==?=

Disposable Diaper Waste Issues and Solutions - January 2011 The increasing volume of disposable diaper waste generated by nursing facilities and hospitals has become problematic due to CO2 emissions during incineration and the burden on incinerators caused by high moisture content. Meanwhile, recycling technologies for recovering cellulose fibers and improvements in the efficiency of separate collection are advancing. The National Institute for Environmental Studies aims to recycle them into renewable resources using biorefinery technology, while Unicharm is testing the use of biodegradable polymers. Furthermore, there is a growing need in Japan for a system design modeled after Germany's Packaging Recycling Act. Building a circular economy at the local level and introducing traceability will be key to achieving sustainable solutions.

紙オムツ廃棄問題とその解決策 - 2011年1月

紙オムツ廃棄問題とその解決策 - 2011年1月

介護施設や病院で発生する紙オムツ廃棄量の増加により、焼却時のCO2排出や高含水率による焼却炉への負担が問題となっています。一方、セルロース繊維を回収するリサイクル技術や分別収集の効率化が進展。国立環境研究所はバイオリファイナリー技術で再生資源化を目指し、ユニ・チャームは生分解性ポリマーの利用を試験中です。また、ドイツの容器包装リサイクル法を参考にした制度設計が日本でも求められています。地域レベルでの循環型社会構築やトレーサビリティの導入が、持続可能な解決策のカギとなるでしょう。

=?UTF-8?B?V2luZHMgQmxvd2luZyBUaHJvdWdoIHRoZSBDaXR5IG9mIFJ1YmJsZTogMTk0NeKAkzE5NzEgVGhlIHdhciBsZWZ0IHZhc3QgYW1vdW50cyBvZiBydWJibGUgaW4gdGhlIGNpdHksIGFuZCBUb2t5byBkdXJpbmcgaXRzIHJlY29uc3RydWN0aW9uIHBlcmlvZCBmYWNlZCBtb3VudGFpbnMgb2Ygd2FzdGUgdW5saWtlIGFueXRoaW5nIGl0IGhhZCBldmVyIGV4cGVyaWVuY2VkIGJlZm9yZS4gV29vZCwgdGlsZXMsIGFuZCBtZXRhbCBmcmFnbWVudHMgZnJvbSBidXJuZWQtZG93biBob3VzZXMgcGlsZWQgdXAgb24gdGhlIHN0cmVldHMsIGFuZCB1cmJhbiByZWJ1aWxkaW5nIGJlZ2FuIHdpdGggbm8gY2xlYXIgcGxhbiBmb3IgdGhlaXIgZGlzcG9zYWwuIEFzIHBvcHVsYXRpb25zIHJldHVybmVkIGFuZCBlY29ub21pYyBhY3Rpdml0eSByZXN1bWVkLCBkYWlseSBob3VzZWhvbGQgd2FzdGUgYWxzbyBzdXJnZWQsIGNyZWF0aW5nIGEgZG91YmxlIGJ1cmRlbiBvZiBvdmVybGFwcGluZyBydWJibGUgYW5kIGRvbWVzdGljIHJlZnVzZS4gSW5zdWZmaWNpZW50IGNvbGxlY3Rpb24gc3lzdGVtcyBhbmQgaW5jaW5lcmF0aW9uIGZhY2lsaXRpZXMgbGVkIHRvIHdpZGVzcHJlYWQgZHVtcGluZyBhbmQgb3BlbiBzdG9ja3BpbGluZywgY2F1c2luZyBmb3VsIG9kb3JzIGFuZCBwZXN0IGluZmVzdGF0aW9ucyB0aGF0IHBsdW5nZWQgcHVibGljIGhlYWx0aCBpbnRvIGNyaXNpcy4gQXMgYSBjb3VudGVybWV hc3VyZSwgbGFuZGZpbGwgZGlzcG9zYWwgaW4gVG9reW8gQmF5IHByb2dyZXNzZWQsIGFuZCBlbnZpcm9ubWVudGFsIHByb2JsZW1zIHN1cmZhY2VkIGF0IFl1bWVub3NoaW1hIGR1ZSB0byB0aGUgbGFuZGZpbGwgb2YgdW50cmVhdGVkIHJhdyBnYXJiYWdlLiBUaGVzZSBiaXR0ZXIgZXhwZXJpZW5jZXMgbGVkIHRvIHRoZSBkZXZlbG9wbWVudCBvZiB0aGUgU2FuaXRhdGlvbiBMYXcgYW5kIHRoZSBlbmFjdG1lbnQgb2YgdGhlIFdhc3RlIERpc3Bvc2FsIGFuZCBQdWJsaWMgQ2xlYW5zaW5nIExhdywgcmVvcmdhbml6aW5nIHVyYmFuIHdhc3RlIGFkbWluaXN0cmF0aW9uLiBUaGUgd2FyIHRodXMgYmVjYW1lIGFuIG9wcG9ydHVuaXR5IHRvIHJlZXhhbWluZSBub3Qgb25seSB0aGUgcnViYmxlIGl0c2VsZiwgYnV0IHRoZSB2ZXJ5IG5hdHVyZSBvZiB1cmJhbiBtYXRlcmlhbCBjeWNsZXMgYW5kIGVudmlyb25tZW50YWwgcG9saWN5LiA=?=

Winds Blowing Through the City of Rubble: 1945–1971 The war left vast amounts of rubble in the city, and Tokyo during its reconstruction period faced mountains of waste unlike anything it had ever experienced before. Wood, tiles, and metal fragments from burned-down houses piled up on the streets, and urban rebuilding began with no clear plan for their disposal. As populations returned and economic activity resumed, daily household waste also surged, creating a double burden of overlapping rubble and domestic refuse. Insufficient collection systems and incineration facilities led to widespread dumping and open stockpiling, causing foul odors and pest infestations that plunged public health into crisis. As a countermeasure, landfill disposal in Tokyo Bay progressed, and environmental problems surfaced at Yumenoshima due to the landfill of untreated raw garbage. These bitter experiences led to the development of the Sanitation Law and the enactment of the Waste Disposal and P
ublic Cleansing Law, reorganizing urban waste administration. The war thus became an opportunity to reexamine not only the rubble itself, but the very nature of urban material cycles and environmental policy.

瓦礫の都に吹く風 1945年から1971年

瓦礫の都に吹く風 1945年から1971年

戦争は都市に膨大な瓦礫を残し、復興期の東京は、それまで経験したことのない廃棄物の山に直面した。焼け落ちた家屋の木材や瓦、金属片は街路に堆積し、処理の見通しも立たないまま都市の再建が始まる。やがて人口が戻り、経済活動が再開されると、日常生活から生じるごみも急増し、瓦礫と生活廃棄物が重なり合う二重の負荷が生まれた。収集体制や焼却施設は不足し、野積みや投棄が広がって悪臭や害虫が発生し、公衆衛生は深刻な危機に陥る。対策として東京湾の埋立処分が進められ、夢の島では未処理の生ごみ埋立による環境問題が表面化した。こうした苦い経験は清掃法の整備や廃棄物処理法制定へとつながり、都市の廃棄物行政を再編させる。戦争は瓦礫だけでなく、都市の物質循環と環境政策のあり方そのものを
問い直す契機となったのである。

=?UTF-8?B?VGhlIFdpbmQgQmxvd2luZyBUaHJvdWdoIHRoZSBDaXR5IG9mIFJ1YmJsZTogMTk0NSB0byAxOTcxIFdhciBzZXZlcnMgdGhlIGNpdHkncyB0aW1lIGluIGFuIGluc3RhbnQuIEhvdXNlcyBidXJuZWQgZG93biBieSBhaXIgcmFpZHMsIGNvbGxhcHNlZCB3YWxscywgc2hhdHRlcmVkIHRpbGVzLCBjaGFycmVkIHdvb2QsIGFuZCBtZXRhbCBmcmFnbWVudHMgYWNjdW11bGF0ZSBvbiB0aGUgc3RyZWV0cyBhbG9uZ3NpZGUgbWVtb3JpZXMgb2YgZGFpbHkgbGlmZS4gVGhpcyB3YXMgd2FzdGUgZW50aXJlbHkgZGlmZmVyZW50IGZyb20gb3JkaW5hcnkgaG91c2Vob2xkIGdhcmJhZ2XigJRoZWF2eSwgYnVsa3ksIGFuZCB3aXRoIG5vd2hlcmUgdG8gZ28uIEltbWVkaWF0ZWx5IGFmdGVyIGRlZmVhdCwgVG9reW8gd2FzIHNocm91ZGVkIGluIGEgc2lsZW5jZSBjYWxsZWQgcnViYmxlLCB3aXRoIG5vIHByb3NwZWN0IG9mIGl0cyBkaXNwb3NhbC4gVGhlIGNpdHkgc291Z2h0IHRvIHJpc2UgYWdhaW4sIHlldCBiZW5lYXRoIGl0cyBmZWV0IGxheSBtb3VudGFpbnMgb2YgbWF0ZXJpYWwgdG9vIHZhc3QgdG8gaGFuZGxlLiBBcyBwZW9wbGUgcmV0dXJuZWQsIGNvbW1lcmNlIHJlc3RhcnRlZCwgYW5kIGRhaWx5IGxpZmUgcmVnYWluZWQgaXRzIGJyZWF0aCwgaG91c2Vob2xkIHdhc3RlIHN1cmdlZC4gRGFpbHkgcmVmdXNlIHBpbGVkIGF0b3AgdGhlIHJ1YmJsZS4gVGhlIHBvc3R3YXIgY2l0eSBib3J lIHRoZSBkdWFsIGJ1cmRlbiBvZiB3YXItZGFtYWdlIGRlYnJpcyBhbmQgaG91c2Vob2xkIHdhc3RlIHNpbXVsdGFuZW91c2x5LiBMYWJvciwgdmVoaWNsZXMsIGFuZCBmdWVsIHdlcmUgc2NhcmNlLCBhbmQgaW5jaW5lcmF0aW9uIGZhY2lsaXRpZXMgd2VyZSBpbnN1ZmZpY2llbnQuIENvbGxlY3Rpb24gc3RhbGxlZCwgbGVhZGluZyB0byB3aWRlc3ByZWFkIGR1bXBpbmcgYW5kIG9wZW4gcGlsZXMsIGNhdXNpbmcgZm91bCBvZG9ycyBhbmQgcGVzdCBpbmZlc3RhdGlvbnMuIEdhcmJhZ2UgYmVjYW1lIG5vdCBtZXJlbHkgYW4gdW5wbGVhc2FudCBudWlzYW5jZSwgYnV0IGEgcHVibGljIGhlYWx0aCBjcmlzaXMgaXRzZWxmLiBUaGUgY2l0eSdzIHJlY29uc3RydWN0aW9uIGJlZ2FuIHdpdGggdGhlIHN0cnVnZ2xlIGFnYWluc3Qgd2FzdGUu?=

The Wind Blowing Through the City of Rubble: 1945 to 1971 War severs the city's time in an instant. Houses burned down by air raids, collapsed walls, shattered tiles, charred wood, and metal fragments accumulate on the streets alongside memories of daily life. This was waste entirely different from ordinary household garbage—heavy, bulky, and with nowhere to go. Immediately after defeat, Tokyo was shrouded in a silence called rubble, with no prospect of its disposal. The city sought to rise again, yet beneath its feet lay mountains of material too vast to handle. As people returned, commerce restarted, and daily life regained its breath, household waste surged. Daily refuse piled atop the rubble. The postwar city bore the dual burden of war-damage debris and household waste simultaneously. Labor, vehicles, and fuel were scarce, and incineration facilities were insufficient. Collection stalled, leading to widespread dumping and open piles, causing foul odors and pest infesta
tions. Garbage became not merely an unpleasant nuisance, but a public health crisis itself. The city's reconstruction began with the struggle against waste.

This situation eventually led to the reclamation of Tokyo Bay. The idea of creating land by filling it with rubble and waste was also a means to advance reconstruction and expansion simultaneously. However, when kitchen waste was dumped into the landfill before processing capacity could catch up, foul odors, massive fly infestations, and even spontaneous combustion caused by gas became serious problems. Yumenoshima was a place where the weaknesses of the postwar waste management system surfaced in a different form. The material debt left by the war erupted again in another part of the city after more than a decade. This experience spurred institutional reforms. The Sanitation Act was enacted in response to the postwar sanitation crisis, and its framework was later updated to the Waste Management and Public Cleansing Act during the subsequent period of high economic growth. The garbage problem began as an emergency arising from war, expanded riding the waves of reconstruction
and economic growth, and eventually led to conflicts within the city. The so-called Garbage War of 1971 was one such outcome. Friction over the siting and burden of treatment facilities created new tensions within the city. The relationship between war and garbage is not merely a story of cleanup. War damage severed the city's material cycles, generated waste exceeding processing capacity, caused sanitation problems, led to landfill environmental issues, and ultimately forced the reorganization of legal systems and urban policies. The mountains of rubble would eventually become incinerators, power plants, and the foundation for the concepts of sorting and recycling. At the starting point lay the image of postwar cities confronting their lost garbage amidst the winds blowing through the burnt ruins.

瓦礫の都に吹く風 1945年から1971年

瓦礫の都に吹く風 1945年から1971年

戦争は、都市の時間を一瞬で断ち切る。空襲によって焼け落ちた家屋、崩れた壁、砕けた瓦、焦げた木材や金属片は、生活の記憶とともに街路に堆積する。それは、ふだんの家庭ごみとはまったく異なる、重く、かさばり、行き場のない廃棄物であった。敗戦直後の東京は、瓦礫という名の沈黙に覆われ、その処理の見通しさえ立たない状態に置かれた。都市は再び立ち上がろうとするが、その足元には処理しきれない物質の山が横たわっていたのである。

やがて人びとが戻り、商いが再開され、日常の営みが息を吹き返すと、生活ごみが急増する。瓦礫の上に、日々のごみが重なっていく。戦後の都市は、戦災瓦礫と生活廃棄物という二重の負荷を同時に抱え込んだ。人手も車両も燃料も不足し、焼却施設は十分に整っていなかった。収集は滞り、野積みや投棄が広がり、悪臭や害虫が発生する。ごみは、単なる不快な存在ではなく、公衆衛生の危機そのものとなった。都市の復興は、まずごみとの格闘から始まったのである。

この状況は、やがて東京湾の埋立へと向かう。瓦礫やごみを埋め立て、土地をつくり出すという発想は、復興と拡張を同時に進める手段でもあった。だが、処理能力が追いつかないまま生ごみが埋め立てられると、悪臭やハエの大量発生、さらにはガスによる自然発火が問題化する。夢の島は、戦後の処理体制の弱さが形を変えて表面化した場所であった。戦争が残した物質的負債は、十数年の時間を経て、都市の別の場所で再び噴き出したのである。

こうした経験は、制度の整備を促した。戦後の衛生危機を受けて清掃法が制定され、その後の高度経済成長期には廃棄物処理法へと枠組みが更新される。ごみ問題は、戦争という非常事態から始まり、復興と経済成長の波に乗って拡大し、やがて都市内の対立へとつながっていく。一九七一年のいわゆるごみ戦争は、その帰結の一つであった。処理施設の立地や負担をめぐる摩擦は、都市の内部に新たな緊張を生み出した。

戦争とごみの関係は、単なる後始末の物語ではない。戦災は都市の物質循環を断ち切り、処理能力を超える廃棄物を発生させ、衛生問題を引き起こし、埋立地の環境問題へと連鎖し、ついには法制度や都市政策の再編を迫った。瓦礫の山は、やがて焼却炉となり、発電施設となり、分別やリサイクルの思想へとつながっていく。その出発点には、焼け跡に吹く風の中で、行き場を失ったごみと向き合う戦後の都市の姿があった。

The Silent Threat Drifting in the Sea of Japan - October 1993

The Silent Threat Drifting in the Sea of Japan - October 1993

On October 17, 1993, the Russian Navy dumped liquid radioactive waste into the Sea of Japan, approximately 200 kilometers southeast of Vladivostok. This act stemmed from difficulties in processing waste generated from decommissioned nuclear submarines. When the dumping became known, the Japanese government lodged a strong protest with the Russian government, and condemnation spread throughout the international community.

This issue was discussed at the Conference of the Parties to the London Convention, becoming a catalyst for the prohibition of ocean dumping of low-level radioactive waste. Subsequently, with Japan's support, the floating treatment facility "Suzuran" was constructed in Russia's Far East to enhance radioactive waste processing capacity, advancing international efforts to prevent marine pollution. **Source:**
- [Japan Federation of Bar Associations](https://www.nichibenren.or.jp/document/statement/year/1993/1993_12.html?utm_source=chatgpt.com)
URL: https://www.nichibenren.or.jp/document/statement/year/1993/1993_12.html?utm_source=chatgpt.com
- [Ministry of Foreign Affairs](https://www.mofa.go.jp/mofaj/gaiko/kaku/kyuso/suzuran.html?utm_source=chatgpt.com) URL: https://www.mofa.go.jp/mofaj/gaiko/kaku/kyuso/suzuran.html?utm_source=chatgpt.com
- [Japan Atomic Energy Agency](https://atomica.jaea.go.jp/data/detail/dat_detail_11-02-05-04.html?utm_source=chatgpt.com)
URL: https://atomica.jaea.go.jp/data/detail/dat_detail_11-02-05-04.html?utm_source=chatgpt.com
- [Atomic Energy Commission](https://www.aec.go.jp/jicst/NC/about/hakusho/wp1994/sb1020701.htm?utm_source=chatgpt.com)
URL: https://www.aec.go.jp/jicst/NC/about/hakusho/wp1994/sb1020701.htm?utm_source=chatgpt.com

日本海に漂う静かなる脅威 - 1993年10月

日本海に漂う静かなる脅威 - 1993年10月

1993年10月17日、ロシア海軍はウラジオストク南東約200キロの日本海において、液体放射性廃棄物を投棄した。この行為は、解体された原子力潜水艦から生じる廃棄物の処理が困難であったことが背景にある。投棄の事実が明らかになると、日本政府はロシア政府に対し厳重に抗議し、国際社会でも非難の声が広がった。

この問題は、ロンドン条約の締約国会議において議論され、低レベル放射性廃棄物の海洋投棄が禁止される契機となった。その後、日本の支援のもと、ロシア極東地域には放射性廃棄物の処理能力を向上させるための浮体構造型処理施設「すずらん」が建設され、海洋汚染防止のための国際的な取り組みが進められた。

**情報源:**
- [日本弁護士連合会](https://www.nichibenren.or.jp/document/statement/year/1993/1993_12.html?utm_source=chatgpt.com)
URL: https://www.nichibenren.or.jp/document/statement/year/1993/1993_12.html?utm_source=chatgpt.com
- [外務省](https://www.mofa.go.jp/mofaj/gaiko/kaku/kyuso/suzuran.html?utm_source=chatgpt.com)
URL: https://www.mofa.go.jp/mofaj/gaiko/kaku/kyuso/suzuran.html?utm_source=chatgpt.com
- [日本原子力研究開発機構](https://atomica.jaea.go.jp/data/detail/dat_detail_11-02-05-04.html?utm_source=chatgpt.com)
URL: https://atomica.jaea.go.jp/data/detail/dat_detail_11-02-05-04.html?utm_source=chatgpt.com
- [原子力委員会](https://www.aec.go.jp/jicst/NC/about/hakusho/wp1994/sb1020701.htm?utm_source=chatgpt.com)
URL: https://www.aec.go.jp/jicst/NC/about/hakusho/wp1994/sb1020701.htm?utm_source=chatgpt.com

Sunday, February 15, 2026

=?UTF-8?B?IyMjIEhpc3RvcnkgYW5kIEN1cnJlbnQgU3RhdHVzIG9mIEphcGFuJ3MgU2hpZnQgQXdheSBmcm9tIEluY2luZXJhdGlvbiBEZXBlbmRlbmNlIC0gRnJvbSBOb3ZlbWJlciAxOTk3IHRvIHRoZSAyMDIwcyAjIyMjIENoYWxsZW5nZXMgaW4gMTk5NyBhbmQgdGhlIFN0YXJ0IG9mIEVmZm9ydHMgSW4gSmFwYW4sIGFzIG9mIDE5OTcsIGRlcGVuZGVuY2Ugb24gaW5jaW5lcmF0aW9uIGZvciB3YXN0ZSBkaXNwb3NhbCB3YXMgcHJvbm91bmNlZCwgd2l0aCB0aGUgbnVtYmVyIG9mIGluY2luZXJhdGlvbiBmYWNpbGl0aWVzIGFuZCB0aGUgdm9sdW1lIG9mIHdhc3RlIHByb2Nlc3NlZCBiZWluZyBvdmVyd2hlbG1pbmdseSBoaWdoZXIgY29tcGFyZWQgdG8gRXVyb3BlYW4gYW5kIEFtZXJpY2FuIGNvdW50cmllcy4gUGFydGljdWxhcmx5LCBkaW94aW4gZW1pc3Npb25zIGZyb20gaW5jaW5lcmF0aW9uIGFuZCB0aGUgZGlzcG9zYWwgb2YgaW5jaW5lcmF0b3IgYXNoIHdlcmUgbWFqb3IgY2hhbGxlbmdlcy4gSW4gcmVzcG9uc2UsIHRob3JvdWdoIHNlcGFyYXRlIGNvbGxlY3Rpb24sIHJlc291cmNlIHJlY292ZXJ5LCBhbmQgYSBzaGlmdCB0b3dhcmRzIHJlY3ljbGluZyB3ZXJlIGRlbWFuZGVkLiBGdXJ0aGVybW9yZSwgdGhlIGdvdmVybm1lbnQgYWltZWQgdG8gYW1lbmQgdGhlIFdhc3RlIE1hbmFnZW1lbnQgTGF3IGFuZCBidWlsZCBhIHN1c3RhaW5hYmxlIHdhc3RlIG1hbmFnZW1lbnQgc3lzdGV tIGxlc3MgcmVsaWFudCBvbiBpbmNpbmVyYXRpb24u?=

### History and Current Status of Japan's Shift Away from Incineration Dependence - From November 1997 to the 2020s #### Challenges in 1997 and the Start of Efforts In Japan, as of 1997, dependence on incineration for waste disposal was pronounced, with the number of incineration facilities and the volume of waste processed being overwhelmingly higher compared to European and American countries. Particularly, dioxin emissions from incineration and the disposal of incinerator ash were major challenges. In response, thorough separate collection, resource recovery, and a shift towards recycling were demanded. Furthermore, the government aimed to amend the Waste Management Law and build a sustainable waste management system less reliant on incineration.

#### Developments in the 2000s During the 2000s, stricter standards for dioxin reduction were implemented, and stringent regulations were introduced for new incinerator construction. Progress was also made in establishing regional recycling hubs and promoting corporate recycling initiatives. Consequently, the volume of waste incinerated in Japan gradually decreased, though reliance on incineration remained high.

#### Progress in the 2010s In the 2010s, the Ministry of the Environment spearheaded the formulation of the Basic Plan for the Promotion of a Recycling-Oriented Society, leading to a full-scale push for the 3Rs (Reduce, Reuse, Recycle) of waste. Specifically targeting plastic waste reduction, the "Plastic Resource Circulation Strategy" was announced in 2018, clarifying recycling and reduction targets. As part of these efforts, supermarkets and convenience stores began charging for plastic shopping bags, and plastic reduction initiatives spread among businesses and local governments. Meanwhile, processing disaster waste was also a major challenge in the 2010s. After the 2011 Great East Japan Earthquake, Miyagi and Fukushima Prefectures faced the need to properly manage debris and waste containing radioactive materials. While wide-area processing and temporary storage sites were established, gaining public understanding remained a challenge. #### Current Situation in the 2020s
In the 2020s, Japan's annual waste generation stands at approximately 41.67 million tons, equivalent to about 901 grams per person per day—a high level. Incineration remains the primary disposal method, and transforming the waste management system continues to be a challenge. Dioxin emissions decreased significantly from approximately 2,000 g-TEQ/year in 1997 to 98-100 g-TEQ/year in 2020, but further reductions are required. Reducing plastic waste is also a critical challenge. According to a Ministry of the Environment study, the amount of plastic waste in the oceans could exceed the amount of fish by 2050. In response, companies like Mitsubishi Heavy Industries are promoting waste plastic pyrolysis projects, though cost and developing applications for the resulting oil remain challenges. Locally, Hachijojima Town in Tokyo plans to introduce a deposit system, with operational costs and securing resident cooperation seen as key factors. The government continues revising the
Waste Management and Public Cleansing Act, advancing efforts toward building a resource-recycling society.

--- Japan, having addressed its reliance on incineration since 1997, has continued tackling challenges in collaboration with local communities and businesses. This includes promoting the formation of a recycling-oriented society in the 2010s, managing disaster waste, and now aiming for a transition to a plastic-free society in the 2020s.

### 日本におけるごみ焼却依存からの脱却の歴史と現状 - 1997年11月から2020年代まで

### 日本におけるごみ焼却依存からの脱却の歴史と現状 - 1997年11月から2020年代まで

#### 1997年の課題と取り組みの始まり
日本では、1997年の時点で廃棄物処理の焼却依存が顕著であり、焼却施設の数や処理量が欧米諸国と比較して圧倒的に多い状況でした。特に、焼却に伴うダイオキシン排出や焼却灰の処理が大きな課題とされていました。これに対し、分別収集の徹底や再資源化、リサイクルへの転換が求められました。また、廃棄物処理法の改正を進め、焼却に頼らない持続可能な廃棄物処理システムの構築が政府の目標となりました。

#### 2000年代の展開
2000年代には、ダイオキシン削減のための基準強化や、焼却炉の新設に厳しい規制が導入されました。また、地域ごとのリサイクル拠点の整備や企業による廃棄物のリサイクル推進も進展しました。これにより、日本国内では焼却処理量が徐々に減少しつつありましたが、依然として焼却依存は高いままでした。

#### 2010年代の進展
2010年代には、環境省主導で循環型社会形成推進基本計画が策定され、廃棄物の3R(リデュース、リユース、リサイクル)の促進が本格化しました。特にプラスチックごみの削減に向けて、2018年には「プラスチック資源循環戦略」が公表され、再資源化や削減目標が明確化されました。この取り組みの一環として、スーパーやコンビニではプラスチック製買い物袋の有料化が進み、企業や自治体での脱プラスチック施策が広がりました。

一方で、震災廃棄物の処理も2010年代の重要な課題でした。2011年の東日本大震災後、宮城県や福島県では、瓦礫の処理や放射性物質を含む廃棄物の適切な管理が求められました。この中で、広域処理や仮置き場の設置が進められましたが、住民の理解を得ることが課題となりました。

#### 2020年代の現状
2020年代において、日本の年間ごみ排出量は約4167万トン、一人一日あたり約901グラムと高い水準にあります。このうち、焼却処理が主流であり、廃棄物処理システムの転換が引き続き課題です。ダイオキシン類の排出量は1997年の約2000g-TEQ/年から2020年には98~100g-TEQ/年まで大幅に減少しましたが、さらなる削減が求められています。

また、プラスチックごみの削減も重要な課題です。環境省の調査によれば、2050年には海洋中のプラスチックごみの量が魚の量を上回る可能性が指摘されています。これを受け、三菱重工業などの企業が廃プラスチック油化事業を推進していますが、コストや生成油の用途開発が依然として課題となっています。

地域では、東京都八丈町がデポジット制度を導入予定ですが、運用コストや住民協力の確保が鍵とされています。政府は廃棄物処理法の改正を継続し、資源循環型社会の構築を目指して取り組みを進めています。

---

日本は1997年からの焼却依存への対応を経て、2010年代の循環型社会形成推進や震災廃棄物の管理、そして2020年代の脱プラスチック社会への転換を目指し、地域や企業と連携して課題解決に取り組み続けています。

"A Discussion on Bayes" This is a discussion about Bayes. The left-hand side represents the posterior distribution, while the right-hand side is the product of the prior distribution and the likelihood, divided by the marginal likelihood. Here, y is the observed value and θ is the parameter. Essentially, we are estimating the parameter from the observed values.

"A Discussion on Bayes" This is a discussion about Bayes. The left-hand side represents the posterior distribution, while the right-hand side is the product of the prior distribution and the likelihood, divided by the marginal likelihood. Here, y is the observed value and θ is the parameter. Essentially, we are estimating the parameter from the observed values.

It's about inverting conditional probability. Regarding the right-hand side, the numerator is the product of the prior distribution and the likelihood, which is called the kernel. In practice, for MCMC (Markov Chain Monte Carlo) or Bayesian estimation, we deal with this kernel. We set the prior distribution to, say, a binomial or beta distribution, and the observed value y fits into it. We then sample from this to obtain the result.

The denominator is the marginal likelihood, written as an integral and also called the denominator. Since this becomes nearly impossible to compute in high dimensions, it's often conveniently ignored. Once the prior distribution and the form of the likelihood function are fixed, we can sample from that distribution, allowing us to estimate the posterior distribution.

「ベイズについての話」

「ベイズについての話」

これはベイズについての話なんですけれども、左辺が事後分布、右辺が事前分布と尤度の積を周辺尤度で割ったものである、ということですね。ここで、y
が観測値、θ
がパラメータです。要するに、観測値からパラメータを推定しているということです。

条件付き確率を逆にする、という話ですね。右辺に関しては、分子は事前分布と尤度の積で、これをカーネル(kernel)と言います。実際、MCMC(マルコフ連鎖モンテカルロ)やベイズ推定の場合は、このカーネルを扱うということになります。事前分布の形を例えば二項分布やベータ分布などにしておいて、そこに観測値
y が入ってくるので、これをサンプリングして求める、ということになります。

分母は周辺尤度で、積分の形で書かれますが、デノミネーターとも呼ばれます。これは高次元になると計算がほぼ不可能なので、便宜上無視することが多いわけです。

事前分布と尤度関数の形を決めてしまえば、あとはその分布からサンプリングできるので、事後分布を推定することができる、というわけです。

=?UTF-8?B?VGhlIEUtV2FzdGUgUHJvYmxlbSBpbiBBZ2JvZ2Jsb3NoaWUsIEdoYW5hLCBBZnJpY2EgLSBOb3ZlbWJlciAyMDIzIFN1bW1hcnkgQWdib2dibG9zaGllIGlzIGtub3duIGFzIHRoZSAid29ybGQncyBsYXJnZXN0IGUtd2FzdGUgZHVtcCwiIHdpdGggYXBwcm94aW1hdGVseSA1MDAsMDAwIHRvbnMgb2YgZWxlY3Ryb25pYyB3YXN0ZSBpbGxlZ2FsbHkgaW1wb3J0ZWQgYW5udWFsbHkgZnJvbSBFdXJvcGUgYW5kIEFtZXJpY2EuIEhhemFyZG91cyBzdWJzdGFuY2VzIGxpa2UgbGVhZCwgY2FkbWl1bSwgYW5kIG1lcmN1cnkgY29udGFpbmVkIGluIGl0ZW1zIHN1Y2ggYXMgY29tcHV0ZXJzIGFuZCBzbWFydHBob25lcyBhcmUgbm90IHByb3Blcmx5IHRyZWF0ZWQsIGNvbnRhbWluYXRpbmcgc29pbCBhbmQgd2F0ZXIgc291cmNlcy4gUGFydGljdWxhcmx5IGNvbmNlcm5pbmcsIHlvdW5nIHBlb3BsZSBhbmQgY2hpbGRyZW4gZW5nYWdlIGluIG1hbnVhbCBkaXNtYW50bGluZyB3b3JrLCBsZWFkaW5nIHRvIGEgZ3Jvd2luZyBudW1iZXIgb2YgaGVhbHRoIGlzc3VlcyBpbmNsdWRpbmcgcmVzcGlyYXRvcnkgZGlzZWFzZXMgYW5kIG5ldXJvbG9naWNhbCBkaXNvcmRlcnMuIFdoaWxlIGxvY2FsIGdvdmVybm1lbnRzLCBOR09zLCBhbmQgZWxlY3Ryb25pY3MgbWFudWZhY3R1cmVycyBsaWtlIERlbGwgYW5kIEhQIGFyZSBhZHZhbmNpbmcgcmVjeWNsaW5nIHN1cHBvcnQgYW5kIHN0cmljdGVyIHJlZ3V sYXRpb25zLCBtb25pdG9yaW5nIHN5c3RlbXMgcmVtYWluIGluYWRlcXVhdGUsIGFuZCB0aGUgcHJvYmxlbSByZW1haW5zIHNldmVyZS4g?=

The E-Waste Problem in Agbogbloshie, Ghana, Africa - November 2023 Summary Agbogbloshie is known as the "world's largest e-waste dump," with approximately 500,000 tons of electronic waste illegally imported annually from Europe and America. Hazardous substances like lead, cadmium, and mercury contained in items such as computers and smartphones are not properly treated, contaminating soil and water sources. Particularly concerning, young people and children engage in manual dismantling work, leading to a growing number of health issues including respiratory diseases and neurological disorders. While local governments, NGOs, and electronics manufacturers like Dell and HP are advancing recycling support and stricter regulations, monitoring systems remain inadequate, and the problem remains severe.

アフリカ・ガーナのアグボグブロシー地区の電子廃棄物問題 - 2023年11月要約

アフリカ・ガーナのアグボグブロシー地区の電子廃棄物問題 - 2023年11月要約

アグボグブロシー地区は、「世界最大の電子廃棄物の墓場」とされ、毎年約500000トンの電子廃棄物がヨーロッパやアメリカから違法に持ち込まれます。パソコンやスマートフォンなどに含まれる鉛やカドミウム、水銀などの有害物質が適切に処理されず、土壌や水源を汚染。特に、若者や子供が手作業で分解作業に従事し、呼吸器疾患や神経障害といった健康被害が拡大しています。現地政府やNGO、電子機器メーカーのデルやHPがリサイクル支援や規制強化を進めていますが、監視体制が不十分で、問題は依然として深刻です。

Saturday, February 14, 2026

=?UTF-8?B?IyMjIEhpc3Rvcnkgb2YgV2FzdGUgTWFuYWdlbWVudCAtIEthZ2F3YSBQcmVmZWN0dXJlIC0gQXByaWwgMjAwNyB0byB0aGUgMjAyMHMgIyMjIyAyMDA3OiBUZWNobm9sb2d5IERldmVsb3BtZW50IGFuZCBJbnRyb2R1Y3Rpb24gSW4gMjAwNywgSWtlZGEgQ29uc3RydWN0aW9uIEluZHVzdHJ5IENvLiwgTHRkLiBpbiBLYWdhd2EgUHJlZmVjdHVyZSBkZXZlbG9wZWQgYSB0ZWNobm9sb2d5IHRvIHNvbGlkaWZ5IGFuZCBpbXByb3ZlIGRyZWRnZWQgc2VkaW1lbnQgZ2VuZXJhdGVkIGF0IGNvbnN0cnVjdGlvbiBzaXRlcy4gVGhpcyB0ZWNobm9sb2d5IGVuYWJsZWQgdGhlIHJldXNlIG9mIGFwcHJveGltYXRlbHkgMTAsMDAwIHRvbnMgb2YgZHJlZGdlZCBzZWRpbWVudCBhbm51YWxseSBhcyBjb25zdHJ1Y3Rpb24gbWF0ZXJpYWxzIGxpa2Ugcm9hZGJlZCBmaWxsLCByZWR1Y2luZyBjb3N0cyBieSBhYm91dCAzMCUgY29tcGFyZWQgdG8gY29udmVudGlvbmFsIGRpc3Bvc2FsIG1ldGhvZHMuIEl0IGFsc28gc3VjY2VlZGVkIGluIHJlZHVjaW5nIGNhcmJvbiBkaW94aWRlIGVtaXNzaW9ucywgZHJhd2luZyBhdHRlbnRpb24gYXMgYSBtb2RlbCBjYXNlIGZvciByZWN5Y2xpbmcgY29uc3RydWN0aW9uIHdhc3RlIGdlbmVyYXRlZCB3aXRoaW4gS2FnYXdhIFByZWZlY3R1cmUuIFRoZSB0ZWNobm9sb2d5IHdhcyByb2xsZWQgb3V0IGFjcm9zcyB0aGUgcmVnaW9uLCByZWNlaXZpbmcgaGlnaCBwcmF pc2UgZnJvbSBsb2NhbCBnb3Zlcm5tZW50cyBhbmQgdGhlIGNvbnN0cnVjdGlvbiBpbmR1c3RyeS4=?=

### History of Waste Management - Kagawa Prefecture - April 2007 to the 2020s #### 2007: Technology Development and Introduction In 2007, Ikeda Construction Industry Co., Ltd. in Kagawa Prefecture developed a technology to solidify and improve dredged sediment generated at construction sites. This technology enabled the reuse of approximately 10,000 tons of dredged sediment annually as construction materials like roadbed fill, reducing costs by about 30% compared to conventional disposal methods. It also succeeded in reducing carbon dioxide emissions, drawing attention as a model case for recycling construction waste generated within Kagawa Prefecture. The technology was rolled out across the region, receiving high praise from local governments and the construction industry.

#### 2010s: Expanding Application Scope During the 2010s, the application scope of this technology expanded throughout Kagawa Prefecture. Ikeda Construction Industries collaborated with local municipalities to promote its use at port and river dredging sites. Furthermore, improvements to the gypsum-based soil improvement solidifying agent enhanced processing efficiency. During this period, approximately 12,000 tons of dredged sediment were reused annually within Kagawa Prefecture, widely utilized in both public and private construction projects. Additionally, the stabilization of the improved soil's quality facilitated its use in diverse applications, such as road construction and embankment reinforcement projects.

#### 2020s: Technological Evolution and Expansion In the 2020s, Ikeda Construction Industries introduced new high-concentration thin-layer dredgers and pump vessels, achieving greater efficiency in dredging operations. The use of gypsum-based soil improvement solidifiers enabled homogeneous modification of dredged sediment, allowing for immediate removal and early reuse. This technology recycles over 10,000 tons of sediment annually, simultaneously reducing processing costs and environmental impact. Furthermore, Kagawa Prefecture established the "Kagawa Prefecture Construction Waste Recycling Guidelines," promoting Ikeda Construction Industry's technology throughout the prefecture.

#### Future Outlook Kagawa Prefecture anticipates further technological innovation and expanded local recycling. Ikeda Construction Industries plans to develop new construction materials utilizing the improved soil and aims to increase annual processing capacity to 15,000 tons. This initiative will continue to draw nationwide attention as an advanced model case for realizing a sustainable society.

### 廃棄物処理の歴史 - 香川県 - 2007年4月~2020年代

### 廃棄物処理の歴史 - 香川県 - 2007年4月~2020年代

#### 2007年:技術開発と導入
香川県の池田建設工業株式会社は、2007年に工事現場で発生する浚渫泥土を固化改良処理する技術を開発しました。この技術により、年間約1万トンの浚渫泥土が路盤材などの建設資材として再利用可能となり、従来の処理方法と比較してコストを約30%削減しました。また、二酸化炭素排出量の削減にも成功し、香川県内で発生する建設廃棄物を循環利用するモデルケースとして注目されました。地域全体への技術展開が進められ、地方自治体や建設業界から高い評価を受けました。

#### 2010年代:適用範囲の拡大
2010年代には、この技術の適用範囲が香川県内全域に広がりました。池田建設工業は、地元自治体と連携して、港湾や河川浚渫現場での活用を推進しました。また、石膏系土質改良固化材の改良が進み、処理効率がさらに向上しました。この期間中、香川県内で再利用された浚渫泥土は年間約1万2000トンに達し、県内の公共工事や民間工事で広く利用されました。さらに、改良土の品質安定化により、道路工事や堤防補強工事など、多様な用途での活用が進みました。

#### 2020年代:技術の進化と展開
2020年代には、池田建設工業が新たに高濃度薄層浚渫船やポンプ船を導入し、浚渫作業の効率化を実現しました。石膏系土質改良固化材を用いることで、浚渫泥土の均質な改良が可能となり、即時搬出や早期再利用が可能になりました。この技術により、年間約1万トン以上の泥土が再資源化されており、処理コストの削減と環境負荷の低減を同時に達成しています。また、香川県は「香川県建設廃棄物等リサイクル指針」を策定し、池田建設工業の技術を県内全域で普及させています。

#### 今後の展望
香川県では、さらなる技術革新と地域内での循環利用の拡大が見込まれています。池田建設工業は、改良土を活用した新しい建設資材の開発を計画しており、将来的には年間処理量を1万5000トンまで増やす計画があります。この取り組みは、持続可能な社会の実現に向けた先進モデルケースとして、全国的な注目を集め続けるでしょう。

Climate and Population Stabilization: A Detailed Account from 2000 to the 2020s --- #### Situation and Challenges in 2000 In 2000, the Worldwatch Institute identified climate change and population growth as the greatest challenges of the 21st century in its “State of the World 2000” report. The global population was projected to reach 8.9 billion by 2050, with rapid growth expected in countries like India and Nigeria. India’s population, which stood at around 1 billion in 2000, grew to approximately 1.39 billion in 2023, while Nigeria's population reached 223 million in the same year.

Climate and Population Stabilization: A Detailed Account from 2000 to the 2020s --- #### Situation and Challenges in 2000 In 2000, the Worldwatch Institute identified climate change and population growth as the greatest challenges of the 21st century in its "State of the World 2000" report. The global population was projected to reach 8.9 billion by 2050, with rapid growth expected in countries like India and Nigeria. India's population, which stood at around 1 billion in 2000, grew to approximately 1.39 billion in 2023, while Nigeria's population reached 223 million in the same year.

Reducing greenhouse gas emissions by 25% compared to 1990 levels was a top priority. Expanding renewable energy was also crucial, with plans to achieve 30% of global energy supply from solar and wind by 2030. Countries like China and the United States, as major emitters, were central to this energy transition. ---

#### Progress and Projected Population Growth in the 2020s According to the IPCC, achieving a 1.5°C limit on global warming requires a 43% reduction in greenhouse gas emissions by 2030 and carbon neutrality by 2050. The global population is expected to reach 8.5 billion by 2030 and 8.9 billion by 2050. India is projected to surpass China as the world's most populous country by 2027. In Africa, rapid growth is also anticipated. Nigeria's population is expected to reach 400 million by 2050, becoming the third-largest population globally. This population surge poses significant challenges for resource management and climate resilience. --- #### Urban Climate Adaptation and Renewable Energy Adoption

Urban decarbonization is advancing. Shenzhen, China, has electrified over 16,000 buses, becoming the world's first city to fully transition its public transport to electric. The European Union (EU) has committed to investing 1 trillion euros in climate-related initiatives by 2030, with over 30% of Europe's electricity now sourced from wind power. --- #### Technological Innovation and Industrial Transformation Technological advances have reduced solar power costs by over 90% from 2010 to the 2020s. Today, solar electricity costs between 3 and 5 yen per kilowatt-hour, making it more economical than coal (8 yen) or natural gas (10 yen). Companies like Toyota and Daimler plan to transition their entire vehicle lineups to electric by 2035.

--- #### Impact on Ecosystems and Adaptation Limits In coastal Indonesia, over 50% of coral reefs have bleached due to rising sea temperatures, impacting fisheries and tourism. In the Alps, glaciers are shrinking by more than 1% annually, jeopardizing water resources. These areas are approaching the limits of adaptation, underscoring the need for urgent support. ---

#### Conclusion and Future Outlook From 2000 to the 2020s, significant progress has been made in addressing climate change and population issues, but more collaboration and action are needed. Achieving carbon neutrality by 2050 is essential to keeping global warming within 1.5°C. Governments, businesses, and civil society must work together for a sustainable future through swift and comprehensive measures.

Climate and Population Stabilization: A Detailed Account from 2000 to the 2020s

Climate and Population Stabilization: A Detailed Account from 2000 to the 2020s

---

#### Situation and Challenges in 2000

In 2000, the Worldwatch Institute identified climate change and population growth as the greatest challenges of the 21st century in its "State of the World 2000" report. The global population was projected to reach 8.9 billion by 2050, with rapid growth expected in countries like India and Nigeria. India's population, which stood at around 1 billion in 2000, grew to approximately 1.39 billion in 2023, while Nigeria's population reached 223 million in the same year.

Reducing greenhouse gas emissions by 25% compared to 1990 levels was a top priority. Expanding renewable energy was also crucial, with plans to achieve 30% of global energy supply from solar and wind by 2030. Countries like China and the United States, as major emitters, were central to this energy transition.

---

#### Progress and Projected Population Growth in the 2020s

According to the IPCC, achieving a 1.5°C limit on global warming requires a 43% reduction in greenhouse gas emissions by 2030 and carbon neutrality by 2050. The global population is expected to reach 8.5 billion by 2030 and 8.9 billion by 2050. India is projected to surpass China as the world's most populous country by 2027.

In Africa, rapid growth is also anticipated. Nigeria's population is expected to reach 400 million by 2050, becoming the third-largest population globally. This population surge poses significant challenges for resource management and climate resilience.

---

#### Urban Climate Adaptation and Renewable Energy Adoption

Urban decarbonization is advancing. Shenzhen, China, has electrified over 16,000 buses, becoming the world's first city to fully transition its public transport to electric. The European Union (EU) has committed to investing 1 trillion euros in climate-related initiatives by 2030, with over 30% of Europe's electricity now sourced from wind power.

---

#### Technological Innovation and Industrial Transformation

Technological advances have reduced solar power costs by over 90% from 2010 to the 2020s. Today, solar electricity costs between 3 and 5 yen per kilowatt-hour, making it more economical than coal (8 yen) or natural gas (10 yen). Companies like Toyota and Daimler plan to transition their entire vehicle lineups to electric by 2035.

---

#### Impact on Ecosystems and Adaptation Limits

In coastal Indonesia, over 50% of coral reefs have bleached due to rising sea temperatures, impacting fisheries and tourism. In the Alps, glaciers are shrinking by more than 1% annually, jeopardizing water resources. These areas are approaching the limits of adaptation, underscoring the need for urgent support.

---

#### Conclusion and Future Outlook

From 2000 to the 2020s, significant progress has been made in addressing climate change and population issues, but more collaboration and action are needed. Achieving carbon neutrality by 2050 is essential to keeping global warming within 1.5°C. Governments, businesses, and civil society must work together for a sustainable future through swift and comprehensive measures.

In Montreal, bioremediation technology is gaining attention as part of environmental technology. Developed by BRI, this technology uses microorganisms to decompose explosives like RDX and HMX, and is expected to be used for decontamination at military facilities in the United States and Canada. Furthermore, the City of Montreal is advancing sustainable urban development, including soil and groundwater remediation and wastewater treatment plant expansion, aiming to achieve carbon neutrality by 2050. These initiatives are expected to improve the city's environmental quality since 2004.

In Montreal, bioremediation technology is gaining attention as part of environmental technology. Developed by BRI, this technology uses microorganisms to decompose explosives like RDX and HMX, and is expected to be used for decontamination at military facilities in the United States and Canada. Furthermore, the City of Montreal is advancing sustainable urban development, including soil and groundwater remediation and wastewater treatment plant expansion, aiming to achieve carbon neutrality by 2050. These initiatives are expected to improve the city's environmental quality since 2004.

モントリオールでは、環境技術の一環として、バイオレメディエーション技術が注目されています。BRIが開発したこの技術は、微生物を利用して爆薬RDXやHMXを分解するもので、米国とカナダの軍事施設での汚染除去に期待されています。また、モントリオール市は、2050年までのカーボンニュートラル達成を目指し、土壌・地下水の浄化や廃水処理プラントの拡張など、持続可能な都市開発を進めています。これらの取り組みにより、2004年以降、都市の環境品質向上が期待されています。

モントリオールでは、環境技術の一環として、バイオレメディエーション技術が注目されています。BRIが開発したこの技術は、微生物を利用して爆薬RDXやHMXを分解するもので、米国とカナダの軍事施設での汚染除去に期待されています。また、モントリオール市は、2050年までのカーボンニュートラル達成を目指し、土壌・地下水の浄化や廃水処理プラントの拡張など、持続可能な都市開発を進めています。これらの取り組みにより、2004年以降、都市の環境品質向上が期待されています。

Friday, February 13, 2026

=?UTF-8?B?KipIaXN0b3J5IG9mIERlZm9yZXN0YXRpb24gYW5kIEZsb29kIERhbWFnZSBpbiB0aGUgWWFuZ3R6ZSBSaXZlciBCYXNpbiAtIENoaW5hLCAxOTUwcyB0byAyMDIwcyoqIC0tLSAqKlN1bW1hcnkqKiBEZWZvcmVzdGF0aW9uIHByb2dyZXNzZWQgaW4gdGhlIFlhbmd0emUgUml2ZXIgQmFzaW4gZnJvbSB0aGUgMTk1MHMsIHJlZHVjaW5nIGZvcmVzdCBjb3ZlcmFnZSBmcm9tIDIyJSB0byAxMCUgYnkgdGhlIDE5ODBzLiBUaGlzIHJlc3VsdGVkIGluIGluY3JlYXNlZCBzb2lsIGVyb3Npb24gYW5kIHJpdmVyYmVkIGVsZXZhdGlvbiwgbGVhZGluZyB0byBmcmVxdWVudCBmbG9vZGluZy4gSW4gdGhlIDE5OTBzLCB0aGUgIkdyYWluLWZvci1HcmVlbiIgcG9saWN5IHdhcyBpbnRyb2R1Y2VkLCBpbXBsZW1lbnRpbmcgYWZmb3Jlc3RhdGlvbiBhbmQgc29pbCBlcm9zaW9uIGNvbnRyb2wgbWVhc3VyZXMgdGhyb3VnaCBpbnRlcm5hdGlvbmFsIGNvb3BlcmF0aW9uLiBUaGUgMjAxMHMgc2F3IHRoZSBsYXVuY2ggb2YgdGhlICJZYW5ndHplIFJpdmVyIEVjb25vbWljIEJlbHQiIGluaXRpYXRpdmUsIHByb21vdGluZyB0aGUgZHVhbCBnb2FscyBvZiBlY29ub21pYyBkZXZlbG9wbWVudCBhbmQgZW52aXJvbm1lbnRhbCBjb25zZXJ2YXRpb24uIFN0cmVuZ3RoZW5lZCByZWd1bGF0aW9ucyBhbmQgQUktcG93ZXJlZCB3YXRlciBxdWFsaXR5IG1vbml0b3JpbmcgZW5oYW5jZWQgcG9sbHV0aW9uIGNvbnR yb2wsIGFuZCBmb3Jlc3QgY292ZXJhZ2UgaXMgbm93IHNob3dpbmcgc2lnbnMgb2YgcmVjb3ZlcnkuIEhvd2V2ZXIsIGZsb29kIGRhbWFnZSBwZXJzaXN0ZWQgaW50byB0aGUgMjAyMHMsIHdpdGggZml2ZSBtYWpvciBmbG9vZHMgb2NjdXJyaW5nIGluIDIwMjAgYWxvbmUuIFdoaWxlIHRoZSBUaHJlZSBHb3JnZXMgRGFtIGNvbnRyaWJ1dGVzIHRvIGZsb29kIG1pdGlnYXRpb24sIGNvbmNlcm5zIHJlbWFpbiByZWdhcmRpbmcgaXRzIHNhZmV0eSBhbmQgZW52aXJvbm1lbnRhbCBpbXBhY3QuIFN1c3RhaW5hYmxlIHJlc3RvcmF0aW9uIHJlcXVpcmVzIGJvdGggcmVmb3Jlc3RhdGlvbiBhbmQgY29udGludWVkIGNvb3BlcmF0aW9uLiA=?=

**History of Deforestation and Flood Damage in the Yangtze River Basin - China, 1950s to 2020s** --- **Summary** Deforestation progressed in the Yangtze River Basin from the 1950s, reducing forest coverage from 22% to 10% by the 1980s. This resulted in increased soil erosion and riverbed elevation, leading to frequent flooding. In the 1990s, the "Grain-for-Green" policy was introduced, implementing afforestation and soil erosion control measures through international cooperation. The 2010s saw the launch of the "Yangtze River Economic Belt" initiative, promoting the dual goals of economic development and environmental conservation. Strengthened regulations and AI-powered water quality monitoring enhanced pollution control, and forest coverage is now showing signs of recovery. However, flood damage persisted into the 2020s, with five major floods occurring in 2020 alone. While the Three Gorges Dam contributes to flood mitigation, concerns remain regarding its safety and enviro
nmental impact. Sustainable restoration requires both reforestation and continued cooperation.

**長江流域の森林伐採と洪水被害の歴史 - 中国・1950年代から2020年代まで**

**長江流域の森林伐採と洪水被害の歴史 - 中国・1950年代から2020年代まで**

---

**要約**
長江流域では、1950年代から森林伐採が進行し、1980年代までに森林面積が22%から10%に減少しました。この結果、土壌流出や河床上昇が進み、洪水被害が頻発しました。1990年代には「退耕還林」政策が導入され、国際協力を通じて植林や土壌流出対策が実施されました。2010年代には「長江経済ベルト」計画が開始され、経済発展と環境保全の両立が進められました。規制強化やAIを活用した水質モニタリングにより汚染対策が強化され、森林被覆率も回復傾向にあります。しかし2020年代でも洪水被害は続き、2020年には5回の大規模洪水が発生。三峡ダムが洪水軽減に寄与する一方、安全性や環境影響に懸念もあります。持続可能な復元には植林と協力が不可欠です。

Minato Ward Shinbori Transfer Station Well, you see, there's this place called the "Shinbori Transfer Station" in Minato Ward. It's a collection point for bulky waste. I sort of went there, or rather, just passed by it. There's a photo of it on the Minato Ward website, and just from that photo, I thought it might be a pretty large collection site. But when I actually saw it while passing by, it turned out to be a fairly small facility.

Minato Ward Shinbori Transfer Station Well, you see, there's this place called the "Shinbori Transfer Station" in Minato Ward. It's a collection point for bulky waste. I sort of went there, or rather, just passed by it. There's a photo of it on the Minato Ward website, and just from that photo, I thought it might be a pretty large collection site. But when I actually saw it while passing by, it turned out to be a fairly small facility.

You can't tour it, so I only passed by three or four times, but it seemed smaller than I'd imagined. I think it's near Shiba Park and the Shiba-Koen subway station – right in the heart of the city. It's close to Tokyo Tower, along the circular line. My first impression was, "Why is it here?" The transfer station just seems to appear out of nowhere. However, bulky waste itself doesn't emit a strong foul odor, so maybe the location works.

At this transfer station, bulky waste is sorted into combustible and non-combustible categories. After being pressed here and separated, it's sent to the Central Breakwater Outer Reclamation Disposal Site or the New Marine Disposal Site. I visited in the morning, and from what I could see, it didn't seem very active; it looked somewhat empty.

While Minato Ward has a trendy image, seeing such a facility in the city center felt like glimpsing the hidden side of the metropolis. The Central Breakwater Outer Landfill Disposal Site and the New Marine Disposal Site are apparently operated as a set. The previous disposal site filled up, so this new one was developed offshore. Both are final disposal areas and are generally not open for public viewing.

Initially, it was said to have "another 30 years" of life, but through efforts like promoting recycling, it's thought there's a possibility of extending that to "another 50 years." However, that could also be interpreted as meaning it "only has another 50 years left." Furthermore, if sea levels rise by 30 to 60 centimeters due to global warming, it will require raising the seawalls and reinforcing the drainage pumps and floodgates. Even if the processing capacity itself can be maintained, the burden of infrastructure upkeep will undoubtedly increase. Conditions could become even more severe after 2080. The probability of a major earthquake occurring within the next 50 years is also said to be high, and global warming will continue. The disposal sites will reach their limits. Considering this, the current form of Tokyo as a megacity may not necessarily be sustainable.

In the 1970s, an engineer-turned-economist reportedly stated, "Humanity will not perish from energy or resource shortages, but from waste." If that was a discussion from the 1970s, then precisely 100 years later, in the latter half of this century, those words could very well become a reality. It gave me pause.

港区新堀中継所

港区新堀中継所

えーとですね。港区に「新堀中継所」というのがあるんですけど、これは粗大ごみの集積所なんです。ちょっとそこへ行ってきたというか、通過してみたんですけど。

港区のホームページに写真が載っているんですが、その写真を見た限りでは、かなり大きい集積場なのかなと思ったんです。でも、実際に通りすがりで見てみると、かなり小さい施設なんですよね。

見学はできないので、3、4回通過しただけなんですが、思っていたよりも小さい印象でした。芝公園、地下鉄の芝公園駅のあたりだったと思うんですが、まさに都会ですよね。東京タワーの近くで、環状線沿いなんです。

第一印象は「なんでこんなところに?」という感じでした。中継所は、本当に唐突にあるんですよね。ただ、粗大ごみ自体は強い悪臭を発するわけではないので、立地として成り立っているのかもしれません。

この中継施設では、可燃系の粗大ごみと不燃系に分けられるそうです。ここでプレス処理を行い、可燃系と不燃系に分けた後、中央防波堤外側埋立処分場や新海面処分場へ送られるとのことです。午前中に行ったのですが、見た限りではあまり稼働している様子はなく、やや空の状態でした。

港区というとおしゃれなイメージがありますが、こうした施設が都心部にあるというのは、都市の裏側を見たような感覚でした。

中央防波堤外側埋立処分場と新海面処分場は、二つセットのような形で運用されているそうです。以前の処分場がいっぱいになり、沖合に新たに整備されたとのことです。どちらも最終処分エリアで、基本的に見学はできません。

当初は「あと30年」と言われていたそうですが、リサイクルの推進などによって「あと50年」延命できる可能性があるとされています。ただし、それは「あと50年しか持たない」とも言えます。

さらに、温暖化で海面が30~60センチ上昇した場合、防潮堤のかさ上げや、排水ポンプ・水門の強化が必要になるとのことです。処理能力そのものは維持できるとしても、インフラ維持の負担は確実に増えていきます。

2080年以降は、より厳しい状況になる可能性もあります。この50年以内に大規模地震が発生する確率も高いと言われていますし、温暖化も進行する。処分場も限界を迎える。そう考えると、現在の東京というメガシティの姿が永続するとは限らないのかもしれません。

1970年代に、ある工学系の経済学者が「人類はエネルギー不足や資源不足で滅びるのではなく、廃棄物で滅びる」と述べたと言われています。もしそれが1970年代の議論だとすれば、ちょうど100年後にあたる今世紀後半、その言葉が現実味を帯びる可能性もあるのかもしれません。

少し考えさせられました。

「20260213_1」 Minato Ward has a facility called the "Garbage Transfer Station." It's a hub for collecting bulky waste and sending it to processing plants. I didn't actually go inside; I just passed by and took a look. Photos on Minato Ward's website make it seem like a fairly large facility. But seeing it in passing, it was much smaller than I'd imagined.

「20260213_1」 Minato Ward has a facility called the "Garbage Transfer Station." It's a hub for collecting bulky waste and sending it to processing plants. I didn't actually go inside; I just passed by and took a look. Photos on Minato Ward's website make it seem like a fairly large facility. But seeing it in passing, it was much smaller than I'd imagined.

Since tours aren't available, I've only passed by a few times. It's located near Shiba Park, close to Tokyo Tower, right along the Metropolitan Expressway Loop Line – dead in the middle of the city. My first impression was, "Why here?" The transfer station seems to appear abruptly, somewhat out of place with the surrounding landscape. Still, since bulky waste isn't incinerated on-site, the location might actually make sense.

At this transfer facility, bulky waste is sorted into combustible and non-combustible categories, compressed, and then transported to the Central Breakwater Outer Landfill Disposal Site and the New Marine Disposal Site. When I visited in the morning, there wasn't much activity visible, and it seemed relatively quiet. Minato Ward has a sophisticated image, but this visit made me realize that the infrastructure supporting the city's underbelly definitely exists here.

The Outer Central Breakwater Landfill and the New Marine Disposal Site are Tokyo's current final disposal areas, operated as an integrated system. They were developed by expanding offshore as conventional disposal sites reached capacity. While the estimated final disposal lifespan is about 50 years, it was initially projected to be around 30 years. Extending this lifespan was achieved through promoting recycling. Even so, it's a situation where one could say, "We only have 50 years left."

Concerns also exist regarding the impact of sea level rise due to global warming. Even if sea levels rise by 30 to 60 centimeters, the disposal function itself is considered maintainable, but it would require raising the seawall, reinforcing drainage pumps, and strengthening floodgates. The burden of safety measures will likely grow significantly in the future. Furthermore, the possibility of a major earthquake occurring within the next 50 years cannot be ruled out. Tokyo is one of the world's leading megacities, but if earthquakes, global warming, and the limits of disposal sites converge, the very nature of the city could change. In the 1970s, an engineer-turned-economist reportedly stated, "Humanity will not perish from energy or resource shortages, but from waste." It made me pause to consider that this statement might become a reality in the latter half of this century, precisely 100 years later.

「20260213_1」

「20260213_1」

港区に「ごみ中継所」という施設があります。粗大ごみを集積し、処理場へ送るための中継拠点です。実際に行ってきたというより、近くを通過して様子を見てきました。港区のホームページに写真が載っているのですが、それを見るとかなり大きな施設のように感じます。しかし実際に通りすがりに見ると、思っていたよりもずっと小規模でした。

見学はできないため、数回前を通っただけですが、場所は芝公園付近で、東京タワーの近く、環状線沿いという都会のど真ん中です。第一印象は「なぜこんな場所に?」というものでした。中継所は唐突に現れる印象で、周囲の景観とはやや異質です。ただ、粗大ごみ自体はその場で焼却するわけではないので、立地としては成立するのかもしれません。

この中継施設では、粗大ごみを可燃系と不燃系に分け、圧縮処理を行ったうえで、中央防波堤外側埋立処分場と新海面処分場へ搬送する仕組みになっているそうです。午前中に訪れた際は、稼働している様子はあまり見られず、比較的空いているように見えました。港区というと洗練されたイメージがありますが、その一方で都市の裏側を支えるインフラが確かに存在していることを実感しました。

中央防波堤外側埋立処分場と新海面処分場は、現在の東京の最終処分エリアで、両者は一体的に運用されています。従来の処分場が満杯になり、沖合に拡張する形で整備されたといわれています。最終処分可能年数は約50年とされていますが、当初は30年程度ともいわれており、リサイクルの推進によって延命が図られた結果だそうです。それでも「あと50年しかない」とも言える状況です。

温暖化による海面上昇の影響も懸念されています。仮に海面が30~60センチ上昇した場合でも、処理機能自体は維持可能とされていますが、防波堤のかさ上げや排水ポンプ、水門の強化が必要になります。安全対策の負担は今後ますます大きくなるでしょう。さらに今後50年の間に大規模地震が発生する可能性も否定できません。東京は世界有数のメガシティですが、地震、温暖化、処分場の限界が重なれば、都市のあり方そのものが変わる可能性もあります。

1970年代に、ある工学系の経済学者が「人類はエネルギー不足や資源不足ではなく、廃棄物によって滅びる」と述べたといいます。ちょうどその100年後にあたる今世紀後半、その言葉が現実味を帯びるのかもしれないと、少し考えさせられました。

=?UTF-8?B?IiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgICIgICAgIiAgICAiICAgCW0yMjA5NTIxMDM1MjE 1MjgwNzYyMTQzNjI4NjM2MjE0MwltXH0gMiAxIDMgMSAyIDIgNSAyIDMgUE8gXX0gMiAxIDIgNyAyIDEgMCAyICdZNFglZiAyIDAgMiAzIDMgMCAyIFBPIDAoZ3pmIDIyMjEzMjY4IDIxNyAyIDM1IDEgMiAyIDIgNSAyIDMgNiAwIDIgNCAyIDMgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAyIDEgMiA1IDkgMSA3IDIgMSAyIDUgOSAxIDcgMiAxIDIgNSA5IDEgNyAJbTIyMTMzMzExMyAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAy MTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMCAyMTAgMjEwIDIxMjM0MCAxNSAyMzIzIDEwIDMwIDI0NiA4TnFc77+9fe+/vVggMihnUWcoZ1FnbU4gMiAyIDEgMyAzIDEgMiA3IDIgMSAzIDMgMSAyIDQgMiA1IDIgNiAwIDkgMiA0IDEgOCAyIDEgMyA2IDIgMSAyIDMgMiAxIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgM iAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgMSAzIDMgMSAyIDMgMyAyIDEgMyAzIDEgMiAzIDMgMiAxIDMgMyAxIDIgMyAzIDIgWSAyMTMyMDkxMjQxMzM2MjExMjIxMzM3MTExMjIxMzN+Z1FnIDIxMzEzMzcxMTEyMjEzM3cgMjAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD AwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMA==?=

" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " m22095210352152807621436286362143 m\} 2 1 3 1 2 2 5 2 3 PO ]} 2 1 2 7 2 1 0 2 'Y4X%f 2 0 2 3 3 0 2 PO 0(gzf 22213268 217 2 35 1 2 2 2 5 2 3 6 0 2 4 2 3 2 1 2 5 9 1 7 2 1 2 5 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2
1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 2 1 2 5 9 1 7 m221333113 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 210 212340 15 2323 10 30 246 8Nq\�}�X 2(gQg(gQgmN 2 2 1 3 3 1 2 7 2 1 3 3 1 2 4 2 5 2 6 0 9 2 4 1 8 2 1 3 6 2 1 2 3 2 1 3 3 2 1 3 3 1 2 3 3 2
1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 1 3 3 1 2 3 3 2 Y 213209124133621122133711122133~gQg 213133711122133w 2000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

氏名 学籍番号 提出数

��l
T f[M|ju�S �c�Qpe
*s�QKQ_N m21221 25
�0u�R�N m21207 25
EmΑ Swm m21203 25
�lhT>T m21214 12
R��NSU*Y m21266 14
ٚo�X m20295 10
�g0u�X_N m21280 15
\�]'Y�_ΐ m21257 14
҉0u)Ytf m21241 10
4�(gHY�w m21286 14
W0u�[�e m21290 10
-Nq\\} m21312 25
PO�]}� m21272 10
'Y4X%f� m20233 0
PO0(gzf�_ m21268 17
T�o�f m21360 24
\�g�q�T m21259 17
�g7� t9j m20286 21
0}7��v�e m21335 16
g��Pyva m21204 11
f^y�l m21333 11
'Y�]�S�yNΐ m21231 10
�N0uzz�� m21246 0
8Nq\�}�X m21340 15
�o�S��N m21323 10
�[�o��N m21302 14
(gQg� m21253 21
я��N m21263 12
Kj,g� ^ m21321 18
�S�}��N m21331 17
[��}�'Y m21242 25
�],g��'Y m21250 9
`l0u��*Y m21209 24
T0u��Py m21362 12
~gQg�� m21337 11
�w�]�� m21210 11
�0u�� m20207 2
0uQg��KN�N m21298 12

=?UTF-8?B?VGhlIERhcmsgU2lkZSBvZiBJbmR1c3RyaWFsIFdhc3RlIElsbGVnYWwgRHVtcGluZyBpbiBUb2hva3Ug4oCTIFNlcHRlbWJlciAyMCwgMjAwMiBUaGUgaW5kdXN0cmlhbCB3YXN0ZSBpbGxlZ2FsIGR1bXBpbmcgaW5jaWRlbnQgZGlzY292ZXJlZCBpbiB0aGUgVG9ob2t1IHJlZ2lvbiBnb2VzIGJleW9uZCBhIG1lcmUgZW52aXJvbm1lbnRhbCBpc3N1ZSwgaGlkaW5nIGEgZGVlcC1yb290ZWQgZGFyayBzaWRlLiBUaGlzIGluY2lkZW50IGludm9sdmVkIGFyb3VuZCAzLDAwMCBjb21wYW5pZXMsIGluY2x1ZGluZyBsYXJnZSBhbmQgbGlzdGVkIGNvbXBhbmllcywgd2hpY2ggd2VyZSBmb3VuZCB0byBiZSBjb25kdWN0aW5nIGlsbGVnYWwgd2FzdGUgZGlzcG9zYWwuIFRoZSBkdW1wZWQgd2FzdGUgaW5jbHVkZWQgYXNiZXN0b3MsIFBDQiAocG9seWNobG9yaW5hdGVkIGJpcGhlbnlsKSwgbGVhZCwgY2FkbWl1bSwgYW5kIG90aGVyIGhhemFyZG91cyBzdWJzdGFuY2VzLCB3aXRoIHNldmVyZSBlbnZpcm9ubWVudGFsIGRhbWFnZSBjYXVzZWQuIENvcnJ1cHRpb24gYmV0d2VlbiBXYXN0ZSBEaXNwb3NhbCBDb250cmFjdG9ycyBhbmQgQ29tcGFuaWVzIFRoZSByb290IGNhdXNlIGxpZXMgaW4gdGhlIGlsbGVnYWwgY29sbHVzaW9uIGJldHdlZW4gd2FzdGUgZGlzcG9zYWwgY29udHJhY3RvcnMgYW5kIGNvbXBhbmllcy4gV2FzdGUgZGlzcG9zYWwgaW5jdXJzIGhpZ2ggY29zdHMsIGFuZCBzb21 lIGNvbXBhbmllcyBjb25zcGlyZWQgd2l0aCBmcmF1ZHVsZW50IGNvbnRyYWN0b3JzIHRvIHJlZHVjZSBjb3N0cyBieSBpbGxlZ2FsbHkgZHVtcGluZyB3YXN0ZS4gSW4gdGhlIHdhc3RlIGRpc3Bvc2FsIGluZHVzdHJ5LCBzb21lIGNvcnJ1cHQgb3BlcmF0b3JzIGlsbGVnYWxseSBkaXNwb3NlZCBvZiB3YXN0ZSBpbiBmb3Jlc3RzIGFuZCByaXZlcnMsIGxlYWRpbmcgdG8gY29udGFtaW5hdGlvbiBvZiBsaXZpbmcgZW52aXJvbm1lbnRzLCBmYXJtbGFuZCwgYW5kIGV2ZW4gZ3JvdW5kd2F0ZXIuIE9wYXF1ZSBTdHJ1Y3R1cmUgb2YgdGhlIEluZHVzdHJpYWwgV2FzdGUgSW5kdXN0cnkgVGhlIGluZHVzdHJpYWwgd2FzdGUgaW5kdXN0cnkgY29uc2lzdHMgb2YgbWFueSBzbWFsbC1zY2FsZSBvcGVyYXRvcnMsIHdpdGggaW5hZGVxdWF0ZSBvdmVyc2lnaHQgYWxsb3dpbmcgaWxsZWdhbCBhY3Rpdml0aWVzIHRvIHBlcnNpc3QuIFRoZSBkaXNwb3NhbCBwcm9jZXNzIGl0c2VsZiBpcyBjb21wbGV4LCBhbmQgb2Z0ZW4sIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBjb21wYW5pZXMgYW5kIGNvbnRyYWN0b3JzIHJlbWFpbnMgdW5jbGVhci4gU29tZSBjb250cmFjdG9ycyBoYXZlIGJlZW4gZm91bmQgdG8gZmFsc2lmeSBkaXNwb3NhbCBjZXJ0aWZpY2F0ZXMsIHByZXRlbmRpbmcgdG8gbGVnYWxseSBwcm9jZXNzIHRoZSB3YXN0ZSB3aGlsZSBpbGxlZ2FsbHkgZHVtcGluZyBpdC4gRWNvbm9taWMgUHJlc3N1cmUgQmVo aW5kIHRoZSBJbmNpZGVudCBUaGUgZWNvbm9taWMgcmVjZXNzaW9uIGZvbGxvd2luZyB0aGUgYnViYmxlIGNvbGxhcHNlIGNvbnRyaWJ1dGVkIHRvIHRoZSBpbmNyZWFzZSBpbiBpbGxlZ2FsIGR1bXBpbmcuIENvbXBhbmllcyB3ZXJlIGZvcmNlZCB0byBjdXQgY29zdHMsIGFuZCBleHBlbnNpdmUgd2FzdGUgZGlzcG9zYWwgZmVlcyB3ZXJlIHRhcmdldGVkLiBBcyBhIHJlc3VsdCwgY29tcGFuaWVzIHR1cm5lZCB0byBpbGxlZ2FsIG1lYW5zIHRvIHNhdmUgY29zdHMuIE1vcmVvdmVyLCBjb21wYW5pZXMgdGhhdCBvdXRzb3VyY2VkIHdhc3RlIGRpc3Bvc2FsIG9mdGVuIGZhaWxlZCB0byB2ZXJpZnkgd2hldGhlciBwcm9wZXIgZGlzcG9zYWwgd2FzIGJlaW5nIGNvbmR1Y3RlZCwgbGVhZGluZyB0byB3aWRlc3ByZWFkIGlsbGVnYWwgYWN0aXZpdGllcy4gQ29ycG9yYXRlIEV2YXNpb24gb2YgUmVzcG9uc2liaWxpdHkgV2hhdCBzdGFuZHMgb3V0IGluIHRoaXMgaW5jaWRlbnQgaXMgdGhlIGNvcnBvcmF0ZSBldmFzaW9uIG9mIHJlc3BvbnNpYmlsaXR5LiBQYXJ0aWN1bGFybHkgaW4gdGhlIGNvbnN0cnVjdGlvbiBhbmQgbWFudWZhY3R1cmluZyBzZWN0b3JzLCBtYW55IGNvbXBhbmllcyBmYWlsZWQgdG8gYXVkaXQgdGhlaXIgZXh0ZXJuYWwgY29udHJhY3RvcnMgcHJvcGVybHksIHVsdGltYXRlbHkgYWlkaW5nIGlsbGVnYWwgZHVtcGluZy4gU29tZSBjb21wYW5pZXMsIGRlc3BpdGUgYWR2b2NhdGluZyBmb3IgZ W52aXJvbm1lbnRhbCBwcm90ZWN0aW9uLCB3ZXJlIGZvdW5kIHRvIGJlIGludm9sdmVkIGluIGlsbGVnYWwgcHJhY3RpY2VzLCByYWlzaW5nIHNlcmlvdXMgZXRoaWNhbCBjb25jZXJucy4=?=

The Dark Side of Industrial Waste Illegal Dumping in Tohoku – September 20, 2002 The industrial waste illegal dumping incident discovered in the Tohoku region goes beyond a mere environmental issue, hiding a deep-rooted dark side. This incident involved around 3,000 companies, including large and listed companies, which were found to be conducting illegal waste disposal. The dumped waste included asbestos, PCB (polychlorinated biphenyl), lead, cadmium, and other hazardous substances, with severe environmental damage caused. Corruption between Waste Disposal Contractors and Companies The root cause lies in the illegal collusion between waste disposal contractors and companies. Waste disposal incurs high costs, and some companies conspired with fraudulent contractors to reduce costs by illegally dumping waste. In the waste disposal industry, some corrupt operators illegally disposed of waste in forests and rivers, leading to contamination of living environments, farmland, and
even groundwater. Opaque Structure of the Industrial Waste Industry The industrial waste industry consists of many small-scale operators, with inadequate oversight allowing illegal activities to persist. The disposal process itself is complex, and often, the relationship between companies and contractors remains unclear. Some contractors have been found to falsify disposal certificates, pretending to legally process the waste while illegally dumping it. Economic Pressure Behind the Incident The economic recession following the bubble collapse contributed to the increase in illegal dumping. Companies were forced to cut costs, and expensive waste disposal fees were targeted. As a result, companies turned to illegal means to save costs. Moreover, companies that outsourced waste disposal often failed to verify whether proper disposal was being conducted, leading to widespread illegal activities. Corporate Evasion of Responsibility What stands out in this incident is the corpora
te evasion of responsibility. Particularly in the construction and manufacturing sectors, many companies failed to audit their external contractors properly, ultimately aiding illegal dumping. Some companies, despite advocating for environmental protection, were found to be involved in illegal practices, raising serious ethical concerns.

Damage to Local Residents The illegal dumping also affected local residents. In Misawa City, Aomori, and Noshiro City, Akita, groundwater pollution caused by industrial waste has become a serious issue, raising concerns about public health. Especially in areas where cadmium and lead have infiltrated groundwater, the contamination of agricultural water and drinking water has become a significant problem. The risk of health damage and crop contamination has heightened the sense of crisis in the region. Legal System Inadequacies and Future Challenges In response to this incident, the Ministry of the Environment is considering strengthening the Waste Disposal Act, but there remain concerns about the inadequate monitoring system. Under the current legal framework, it is difficult to detect illegal activities in advance, and it often takes time for the crimes to come to light. Going forward, there is a need to enhance monitoring systems and introduce GPS tracking to improve transpa
rency, but it will require a long-term effort to address the opaque structure of the industry. This incident has revealed significant challenges in Japan's overall industrial waste management system. The dark side of illegal dumping is deep, involving collusion between companies and contractors, legal inadequacies, and economic pressure. This is a serious problem from an environmental protection standpoint.

The Dark Side of Industrial Waste Illegal Dumping in Tohoku – September 20, 2002

The Dark Side of Industrial Waste Illegal Dumping in Tohoku – September 20, 2002

The industrial waste illegal dumping incident discovered in the Tohoku region goes beyond a mere environmental issue, hiding a deep-rooted dark side. This incident involved around 3,000 companies, including large and listed companies, which were found to be conducting illegal waste disposal. The dumped waste included asbestos, PCB (polychlorinated biphenyl), lead, cadmium, and other hazardous substances, with severe environmental damage caused.

Corruption between Waste Disposal Contractors and Companies
The root cause lies in the illegal collusion between waste disposal contractors and companies. Waste disposal incurs high costs, and some companies conspired with fraudulent contractors to reduce costs by illegally dumping waste. In the waste disposal industry, some corrupt operators illegally disposed of waste in forests and rivers, leading to contamination of living environments, farmland, and even groundwater.

Opaque Structure of the Industrial Waste Industry
The industrial waste industry consists of many small-scale operators, with inadequate oversight allowing illegal activities to persist. The disposal process itself is complex, and often, the relationship between companies and contractors remains unclear. Some contractors have been found to falsify disposal certificates, pretending to legally process the waste while illegally dumping it.

Economic Pressure Behind the Incident
The economic recession following the bubble collapse contributed to the increase in illegal dumping. Companies were forced to cut costs, and expensive waste disposal fees were targeted. As a result, companies turned to illegal means to save costs. Moreover, companies that outsourced waste disposal often failed to verify whether proper disposal was being conducted, leading to widespread illegal activities.

Corporate Evasion of Responsibility
What stands out in this incident is the corporate evasion of responsibility. Particularly in the construction and manufacturing sectors, many companies failed to audit their external contractors properly, ultimately aiding illegal dumping. Some companies, despite advocating for environmental protection, were found to be involved in illegal practices, raising serious ethical concerns.

Damage to Local Residents
The illegal dumping also affected local residents. In Misawa City, Aomori, and Noshiro City, Akita, groundwater pollution caused by industrial waste has become a serious issue, raising concerns about public health. Especially in areas where cadmium and lead have infiltrated groundwater, the contamination of agricultural water and drinking water has become a significant problem. The risk of health damage and crop contamination has heightened the sense of crisis in the region.

Legal System Inadequacies and Future Challenges
In response to this incident, the Ministry of the Environment is considering strengthening the Waste Disposal Act, but there remain concerns about the inadequate monitoring system. Under the current legal framework, it is difficult to detect illegal activities in advance, and it often takes time for the crimes to come to light. Going forward, there is a need to enhance monitoring systems and introduce GPS tracking to improve transparency, but it will require a long-term effort to address the opaque structure of the industry.

This incident has revealed significant challenges in Japan's overall industrial waste management system. The dark side of illegal dumping is deep, involving collusion between companies and contractors, legal inadequacies, and economic pressure. This is a serious problem from an environmental protection standpoint.

Thursday, February 12, 2026

History and Current Status of Sino-Japanese Environmental Protection Cooperation (2007–2020s)

History and Current Status of Sino-Japanese Environmental Protection Cooperation (2007–2020s)

In 2007, during talks between Premier Wen Jiabao and Prime Minister Shinzo Abe, the "Joint Statement on Further Strengthening Environmental Protection Cooperation" was issued, outlining cooperation in ten areas including NOx reduction, yellow sand prevention, and technology transfer. During the 2010s, Japanese companies actively participated in China's air pollution prevention plans and renewable energy expansion. Companies like Kawasaki Heavy Industries and Kyocera advanced technology transfers. In the 2020s, President Xi Jinping set the goal of carbon neutrality. Japanese companies expanded their operations in the Chinese market while adapting to environmental regulations. Cooperation between local governments also progressed, with Kyoto City and Xi'an City implementing joint initiatives to improve air quality. Collaboration on climate change and air pollution countermeasures is contributing to building a sustainable future for all of Asia.

日中環境保護協力の歴史と現状(2007年~2020年代)

日中環境保護協力の歴史と現状(2007年~2020年代)

2007年、温家宝首相と安倍晋三首相の会談で「環境保護協力の一層の強化に関する共同声明」が発表され、NOx削減や黄砂防止、技術移転など10分野の協力が示された。2010年代には、中国の大気汚染防止計画や再生可能エネルギー拡大に日本企業が積極的に参画。川崎重工業や京セラなどが技術供与を進めた。2020年代には、習近平国家主席がカーボンニュートラルを目標に掲げ、日本企業も環境規制に対応しながら中国市場での事業を拡大。地方自治体間の協力も進展し、京都市と西安市が大気改善に向けた連携を実施した。気候変動や大気汚染対策での協力は、アジア全体の持続可能な未来の構築に寄与している。

History and Current State of Waste-to-Energy Utilization in the Nordic Countries ### Historical Background In the Nordic region, efforts to utilize waste as an energy source began in the mid-20th century. Particularly in Copenhagen, Denmark, and Stockholm, Sweden, waste incineration has become a key part of urban infrastructure. In 2004, the Amager Resource Center in Copenhagen processed 400000 tons of waste annually, supplying electricity to 50000 households and heating to 120000 households. The energy conversion efficiency exceeded 42%, with 8000 tons of metal recovered annually from the incineration ash.

History and Current State of Waste-to-Energy Utilization in the Nordic Countries ### Historical Background In the Nordic region, efforts to utilize waste as an energy source began in the mid-20th century. Particularly in Copenhagen, Denmark, and Stockholm, Sweden, waste incineration has become a key part of urban infrastructure. In 2004, the Amager Resource Center in Copenhagen processed 400000 tons of waste annually, supplying electricity to 50000 households and heating to 120000 households. The energy conversion efficiency exceeded 42%, with 8000 tons of metal recovered annually from the incineration ash.

Meanwhile, in Västerås, Sweden, 200000 tons of food waste were converted into biogas, fueling about 100 public buses. These efforts contributed to an annual reduction of 8000 tons of carbon dioxide emissions. By the early 2000s, Nordic countries achieved a recycling or energy conversion rate of about 94%, keeping landfill rates below 3%.

### Current Situation in the 2020s In Copenhagen, the Amager Bakke waste-to-energy plant, completed in 2017, supplies energy to 150000 households. Its energy efficiency has reached 107%, with strict emission controls in place. The facility also features a 500-meter ski slope on its roof, serving as a recreational space for residents.

In Sweden, 99.3% of household waste is either used for energy or recycled. The Värtahamnen biofuel plant in Stockholm provides energy to the region, and Sweden generates $100 million annually by importing waste from countries such as the United Kingdom, Norway, and Italy. These initiatives have strengthened climate action efforts and contributed to the sustainable development of urban areas.

This Nordic model is recognized as a successful case of balancing energy efficiency and environmental protection, inspiring similar efforts in countries like Japan. The commitment to reducing fossil fuel dependency and promoting environmental conservation will continue into the future.

History and Current State of Waste-to-Energy Utilization in the Nordic Countries

History and Current State of Waste-to-Energy Utilization in the Nordic Countries

### Historical Background

In the Nordic region, efforts to utilize waste as an energy source began in the mid-20th century. Particularly in Copenhagen, Denmark, and Stockholm, Sweden, waste incineration has become a key part of urban infrastructure. In 2004, the Amager Resource Center in Copenhagen processed 400000 tons of waste annually, supplying electricity to 50000 households and heating to 120000 households. The energy conversion efficiency exceeded 42%, with 8000 tons of metal recovered annually from the incineration ash.

Meanwhile, in Västerås, Sweden, 200000 tons of food waste were converted into biogas, fueling about 100 public buses. These efforts contributed to an annual reduction of 8000 tons of carbon dioxide emissions. By the early 2000s, Nordic countries achieved a recycling or energy conversion rate of about 94%, keeping landfill rates below 3%.

### Current Situation in the 2020s

In Copenhagen, the Amager Bakke waste-to-energy plant, completed in 2017, supplies energy to 150000 households. Its energy efficiency has reached 107%, with strict emission controls in place. The facility also features a 500-meter ski slope on its roof, serving as a recreational space for residents.

In Sweden, 99.3% of household waste is either used for energy or recycled. The Värtahamnen biofuel plant in Stockholm provides energy to the region, and Sweden generates $100 million annually by importing waste from countries such as the United Kingdom, Norway, and Italy. These initiatives have strengthened climate action efforts and contributed to the sustainable development of urban areas.

This Nordic model is recognized as a successful case of balancing energy efficiency and environmental protection, inspiring similar efforts in countries like Japan. The commitment to reducing fossil fuel dependency and promoting environmental conservation will continue into the future.

=?UTF-8?B?TGVhZC1GcmVlIFRlY2hub2xvZ3kgaW4gQWRhY2hpIFdhcmQsIFRva3lvIC0gRnJvbSBKdW5lIDIwMDQgdG8gdGhlIDIwMjBzIEluIDIwMDQsIFNlbmp1IE1ldGFsIEluZHVzdHJ5IENvLiwgTHRkLiBpbiBBZGFjaGkgV2FyZCwgVG9reW8sIGxlZCB0aGUgaW5kdXN0cnkgaW4gZGV2ZWxvcGluZyBsZWFkLWZyZWUgc29sZGVyIGluIHJlc3BvbnNlIHRvIGluY3JlYXNpbmcgZW52aXJvbm1lbnRhbCByZWd1bGF0aW9ucy4gVGhlIGNvbXBhbnkncyB0ZWNobm9sb2d5IHV0aWxpemVkIGFsbG95cyBiYXNlZCBvbiB0aW4sIHNpbHZlciwgYW5kIGNvcHBlciwgZ2FpbmluZyBhdHRlbnRpb24gYXMgYW4gZW52aXJvbm1lbnRhbGx5IGNvbnNjaW91cyBhbHRlcm5hdGl2ZSB0byBjb252ZW50aW9uYWwgbGVhZCBzb2xkZXIuIEhvd2V2ZXIsIHRoaXMgYWxsb3kgc3lzdGVtIGhhZCBhIG1lbHRpbmcgcG9pbnQgMzDCsEMgaGlnaGVyIHRoYW4gY29udmVudGlvbmFsIHByb2R1Y3RzLCBwcmVzZW50aW5nIGNoYWxsZW5nZXMgZm9yIGFwcGxpY2F0aW9ucyByZXF1aXJpbmcgaGVhdCByZXNpc3RhbmNlLiBEZXNwaXRlIHRoaXMsIFNlbmp1IE1ldGFsIGNvbnRpbnVlZCBpbXByb3ZlbWVudHMgdG8gb3ZlcmNvbWUgdGhpcyBpc3N1ZSwgZWFybmluZyBoaWdoIGFjY2xhaW0gYm90aCBkb21lc3RpY2FsbHkgYW5kIGludGVybmF0aW9uYWxseS4gMjAxMHMgRW50ZXJpbmcgdGhlIDIwMTBzLCBTZW5qdSBNZXRhbCB leHBhbmRlZCB0aGUgYXBwbGljYXRpb24gcmFuZ2Ugb2YgaXRzIGxlYWQtZnJlZSB0ZWNobm9sb2d5LCBhY2NlbGVyYXRpbmcgaXRzIHVzZSBpbiB0aGUgYXV0b21vdGl2ZSBhbmQgaG9tZSBhcHBsaWFuY2Ugc2VjdG9ycy4gVGhlIGNvbXBhbnkgbGF1bmNoZWQgdGhlICJFQ09TT0xERVLihKIiIGJyYW5kIGluIDIwMTMsIGludHJvZHVjaW5nIHByb2R1Y3RzIGNvbXBsaWFudCB3aXRoIHRoZSBFdXJvcGVhbiBVbmlvbidzIFJvSFMgRGlyZWN0aXZlIChSZXN0cmljdGlvbiBvZiBIYXphcmRvdXMgU3Vic3RhbmNlcyBEaXJlY3RpdmUpLiBUaGlzIGRpcmVjdGl2ZSBzdHJpY3RseSBsaW1pdHMgdGhlIHVzZSBvZiBsZWFkIGluIGVsZWN0cmljYWwgYW5kIGVsZWN0cm9uaWMgcHJvZHVjdHMsIGRlbW9uc3RyYXRpbmcgU2VuanUgTWV0YWwncyBhYmlsaXR5IHRvIGFkYXB0IHRvIGludGVybmF0aW9uYWwgcmVndWxhdGlvbnMu?=

Lead-Free Technology in Adachi Ward, Tokyo - From June 2004 to the 2020s In 2004, Senju Metal Industry Co., Ltd. in Adachi Ward, Tokyo, led the industry in developing lead-free solder in response to increasing environmental regulations. The company's technology utilized alloys based on tin, silver, and copper, gaining attention as an environmentally conscious alternative to conventional lead solder. However, this alloy system had a melting point 30°C higher than conventional products, presenting challenges for applications requiring heat resistance. Despite this, Senju Metal continued improvements to overcome this issue, earning high acclaim both domestically and internationally. 2010s Entering the 2010s, Senju Metal expanded the application range of its lead-free technology, accelerating its use in the automotive and home appliance sectors. The company launched the "ECOSOLDER™" brand in 2013, introducing products compliant with the European Union's RoHS Directive (Restric
tion of Hazardous Substances Directive). This directive strictly limits the use of lead in electrical and electronic products, demonstrating Senju Metal's ability to adapt to international regulations.

Furthermore, in 2015, the company introduced a new production line in Adachi Ward, Tokyo, increasing production capacity by 25% year-on-year. This brought annual production to 15,000 tons, establishing a system covering over 80% of the domestic market. Also in that year, applying recycling technology, the reuse rate of spent solder was raised from 20% to 30%.

2020s Entering the 2020s, Senju Metal further advanced its lead-free solder technology development, solidifying its position in the global market. The company's tin-silver-copper alloy-based solder reached an annual production volume of approximately 20,000 tons, with 40% exported to the European Union (EU) and Asian markets. The new "ECOSOLDER™" series features a reduced melting point from 240°C to 215°C, making it suitable for automotive and aerospace electronic components requiring high heat resistance.

Plans are also underway to increase the reuse rate of spent solder from 30% to 45% through the introduction of recyclable alloy technology. In 2022, the company increased its R&D expenditure by 20% year-on-year to ¥6 billion, focusing on new material development and manufacturing process improvements. Its contribution to the regional economy is also significant, with projections to support approximately 5,000 jobs, including those at related companies, by 2025.

Conclusion: Senju Metal Industries' lead-free technology represents a model case for sustainable manufacturing. From its technological development phase in 2004 through product adoption in the 2010s and market expansion in the 2020s, the company has consistently pursued initiatives that balance environmental consideration with economic growth.

東京都足立区の鉛フリー技術 - 2004年6月から2020年代の展開

東京都足立区の鉛フリー技術 - 2004年6月から2020年代の展開

2004年
東京都足立区の千住金属工業株式会社は、環境規制の高まりを受け、鉛を含まないはんだの開発で業界をリードしていました。同社の技術はスズ・銀・銅を基盤とする合金を使用し、従来の鉛はんだに代わる環境配慮型製品として注目されていました。しかし、この合金系は融点が従来品より30℃高く、耐熱性が求められる用途には課題が残っていました。それでも、千住金属はこの課題を克服するための改良を続け、国内外で高い評価を得るに至りました。

2010年代
2010年代に入ると、千住金属は鉛フリー技術の適用範囲を広げ、自動車や家電製品の分野での利用が加速しました。同社は、2013年に「ECOSOLDER™」ブランドを立ち上げ、欧州連合(EU)のRoHS指令(有害物質制限指令)に対応した製品を投入しました。この指令は電気・電子製品での鉛の使用を厳しく制限しており、千住金属の技術は国際的な規制への適応力を示しました。

さらに、2015年には新しい製造ラインを東京都足立区に導入し、生産能力を前年比25%増強。これにより、年間生産量が15000トンに達し、国内市場の80%以上をカバーする体制を構築しました。また、同年にはリサイクル技術を応用し、使用済みはんだの再利用率を20%から30%に引き上げました。

2020年代
2020年代に入ると、千住金属は鉛フリーはんだの技術開発をさらに進め、世界市場での地位を確固たるものにしました。同社のスズ・銀・銅の合金系はんだは年間生産量約20000トンに達し、その40%が欧州連合(EU)やアジア市場に輸出されています。新製品「ECOSOLDER™」シリーズでは、融点を240℃から215℃に引き下げ、高耐熱性を必要とする自動車や航空機の電子部品に適合させました。

また、リサイクル可能な合金技術の導入により、使用済みはんだの再利用率を30%から45%に引き上げる計画も進行中です。2022年には、研究開発費を前年比20%増の60億円に引き上げ、新材料開発や製造プロセスの改良に注力しました。地域経済への寄与も顕著であり、2025年には関連企業を含む約5000人の雇用を支える見込みです。

結論
千住金属工業の鉛フリー技術は、2004年の技術開発段階から2010年代の製品普及、2020年代の市場拡大に至るまで、環境配慮と経済成長を両立させる取り組みを続けており、持続可能な製造業の一つのモデルケースとなっています。