Thursday, February 5, 2026

History and Current Status of Septic Tank Installation in Japan: Progress and Challenges from the 1990s to the 2020s

History and Current Status of Septic Tank Installation in Japan: Progress and Challenges from the 1990s to the 2020s

From the 1990s, septic tank installation progressed in Japan. Ordinances and plans around Kojima Lake in Okayama Prefecture and the Yoro River basin in Chiba Prefecture promoted regional water quality improvement. In the 2000s, companies like Fujiclean Industries and Kubota developed advanced treatment septic tanks, leading to the widespread adoption of nitrogen and phosphorus removal technologies. The 2010s saw increased adoption in post-Great East Japan Earthquake reconstruction housing and for protecting tourist areas. By the 2020s, the nationwide installed base reached 7,516,864 units, with 35.6% being advanced treatment types. However, regional disparities and challenges in maintenance and management remain. Further technological innovation and promotion of adoption are required going forward.

日本における浄化槽設置の歴史と現状:1990年代から2020年代までの進展と課題

日本における浄化槽設置の歴史と現状:1990年代から2020年代までの進展と課題

1990年代から日本では浄化槽の設置が進み、岡山県児島湖周辺や千葉県養老川流域での条例や計画が地域の水質改善を促進しました。2000年代にはフジクリーン工業やクボタが高度処理型浄化槽を開発し、窒素・リン除去技術が普及しました。2010年代には東日本大震災後の復興住宅や観光地保護での導入が進展。2020年代には全国設置基数が7516864基に達し、35.6%が高度処理型ですが、地域間格差や維持管理の課題が残ります。今後はさらなる技術革新と普及促進が求められます。

Wednesday, February 4, 2026

Call for proposals for disposal of Brent Spar storage facility - October 1995 The Brent Spar oil storage facility (approximately 140 meters high, weighing approximately 14,600 tons, and 29 meters in diameter) installed in the North Sea oil field was owned by the Shell Group and stored approximately 300,000 barrels of oil per year. In 1995, the British government granted permission for the facility to be dumped into the North Atlantic Ocean, but it was discovered that it contained approximately 1,000 tons of residual oil, which drew strong opposition from environmental protection groups such as Greenpeace and European countries such as Germany, Norway, and Denmark.

Call for proposals for disposal of Brent Spar storage facility - October 1995 The Brent Spar oil storage facility (approximately 140 meters high, weighing approximately 14,600 tons, and 29 meters in diameter) installed in the North Sea oil field was owned by the Shell Group and stored approximately 300,000 barrels of oil per year. In 1995, the British government granted permission for the facility to be dumped into the North Atlantic Ocean, but it was discovered that it contained approximately 1,000 tons of residual oil, which drew strong opposition from environmental protection groups such as Greenpeace and European countries such as Germany, Norway, and Denmark.

Approximately 50,000 people participated in protests in Germany, and a boycott of Shell gas stations was launched in Norway, causing Shell's sales to drop by up to 40% and dealing a serious blow to the company. In response to this situation, Shell temporarily suspended its dumping plans and moored the facility in Norwegian waters.

This incident brought global attention to environmental protection activities and symbolized the growing social awareness of corporate environmental responsibility. In particular, the Brent Spar incident demonstrated the importance of the international community acting in concert on environmental issues and became a symbolic event in international environmental protection activities. Furthermore, the emphasis on the environmental impact of ocean dumping led to significantly stricter standards and regulations for waste disposal in the oil industry thereafter.

Furthermore, regarding the relationship between corporations and society, the Brent Spar incident underscored the importance of "Corporate Social Responsibility (CSR)." Subsequently, many companies began incorporating sustainable environmental measures into their strategies. From an environmental protection perspective, this incident became a historic turning point that profoundly altered the nature of business. 【File Name: 15-1995-10-15.pdf】

ブレント・スパー貯蔵施設の処分方法公募-1995年10月

ブレント・スパー貯蔵施設の処分方法公募-1995年10月

北海油田に設置されていたブレント・スパー石油貯蔵施設(高さ約140メートル、重量約1万4600トン、直径29メートル)は、シェル・グループが所有し、年間約30万バレルの石油を貯蔵していました。1995年、英国政府はこの施設の北大西洋への海中投棄を許可しましたが、約1000トンの残留油が含まれていることが判明し、環境保護団体グリーンピースやドイツ、ノルウェー、デンマークなど欧州諸国から強い反発を受けました。

ドイツでは約5万人が抗議活動に参加し、ノルウェーではシェルのガソリンスタンドに対する不買運動が展開され、シェルの売上は最大40%減少するなど、企業にとっても重大な打撃を受けました。この事態を受け、シェルは投棄計画を一時中止し、施設をノルウェーの海域に係留しました。

この事件は、環境保護活動が世界的に注目される契機となり、企業の環境責任に対する社会的意識の高まりを象徴しました。特にブレント・スパー事件は、国際社会が環境問題に対して協調して行動する重要性を示し、国際的な環境保護活動の象徴的な出来事となりました。また、海洋への投棄が環境に与える影響が強調されたことで、以後の石油業界における廃棄物処理の基準や規制が大幅に厳格化されるきっかけとなりました。

さらに、企業と社会の関係においても、ブレント・スパー事件は「企業の社会的責任(CSR)」の重要性を強調し、以降、多くの企業が持続可能な環境対策を戦略に組み込むようになりました。この事件は、環境保護の観点からもビジネスの在り方を大きく変える歴史的な転換点となりました。

【ファイル名:15-1995-10-15.pdf】

=?UTF-8?B?SWxsZWdhbCBEdW1waW5nIG9mIEZSUCBWZXNzZWxzIC0gTmF0aW9ud2lkZSBpbiBKYXBhbiAtIEhpc3RvcnkgYW5kIEN1cnJlbnQgU3RhdHVzIGZyb20gMjAwNCB0byB0aGUgMjAyMHMgRlJQIChGaWJlciBSZWluZm9yY2VkIFBsYXN0aWMpIHBsZWFzdXJlIGJvYXRzIGdhaW5lZCBwb3B1bGFyaXR5IGR1ZSB0byB0aGVpciBkdXJhYmlsaXR5IGFuZCBsaWdodCB3ZWlnaHQsIGJ1dCB0aGVpciBkaXNwb3NhbCBoYXMgYmVjb21lIGEgc2lnbmlmaWNhbnQgaXNzdWUuIEJ5IDIwMDQsIGFwcHJveGltYXRlbHkgNSwwMDAgdmVzc2VscyB3ZXJlIGJlaW5nIGRpc2NhcmRlZCBhbm51YWxseSwgd2l0aCBhYm91dCAxLDAwMCBpbGxlZ2FsbHkgZHVtcGVkIGFsb25nIGNvYXN0bGluZXMgYW5kIHJpdmVyYmFua3MuIFRoaXMgaWxsZWdhbCBkdW1waW5nIGNhdXNlZCBzZXZlcmUgZW52aXJvbm1lbnRhbCBpbXBhY3RzLCBpbmNsdWRpbmcgdGhlIGRldGVyaW9yYXRpb24gb2YgbWFyaW5lIGVjb3N5c3RlbXMgYW5kIGxhbmRzY2FwZSBkZXN0cnVjdGlvbi4gSW4gcmVzcG9uc2UsIHRoZSBNaW5pc3RyeSBvZiBMYW5kLCBJbmZyYXN0cnVjdHVyZSwgVHJhbnNwb3J0IGFuZCBUb3VyaXNtIChNTElUKSBiZWdhbiBkZXNpZ25pbmcgc3lzdGVtcyB0byBwcm9tb3RlIEZSUCBib2F0IHJlY3ljbGluZy4gRWZmb3J0cyBhZHZhbmNlZCB0byBpbXByb3ZlIGRpc21hbnRsaW5nIGFuZCBjcnVzaGluZyB0ZWNobm9sb2d pZXMgZm9yIGRpc2NhcmRlZCB2ZXNzZWxzIGFuZCBlc3RhYmxpc2ggZGVkaWNhdGVkIHJlY3ljbGluZyBmYWNpbGl0aWVzLiBBZGRpdGlvbmFsbHksIGNhbXBhaWducyB0byBwcmV2ZW50IGlsbGVnYWwgZHVtcGluZyB3ZXJlIGNvbmR1Y3RlZCBpbiBjb2xsYWJvcmF0aW9uIHdpdGggbG9jYWwgZ292ZXJubWVudHMsIGFuZCBtZWNoYW5pc21zIHJlcXVpcmluZyB2ZXNzZWwgb3duZXJzIHRvIGJlYXIgcGFydCBvZiB0aGUgcmVjeWNsaW5nIGNvc3RzIHdlcmUgYWxzbyBjb25zaWRlcmVkLiBIb3dldmVyLCBlbnN1cmluZyB0aGUgcHJvZml0YWJpbGl0eSBvZiByZWN5Y2xpbmcgb3BlcmF0aW9ucyByZW1haW5lZCBhIGNoYWxsZW5nZS4gV2hpbGUgZGV2ZWxvcG1lbnQgcHJvZ3Jlc3NlZCBvbiB0ZWNobm9sb2dpZXMgdG8gcmV1c2UgZGlzY2FyZGVkIEZSUCBhcyBidWlsZGluZyBtYXRlcmlhbHMgb3IgZnVlbCwgd2lkZXNwcmVhZCBpbXBsZW1lbnRhdGlvbiB0b29rIHRpbWUu?=

Illegal Dumping of FRP Vessels - Nationwide in Japan - History and Current Status from 2004 to the 2020s FRP (Fiber Reinforced Plastic) pleasure boats gained popularity due to their durability and light weight, but their disposal has become a significant issue. By 2004, approximately 5,000 vessels were being discarded annually, with about 1,000 illegally dumped along coastlines and riverbanks. This illegal dumping caused severe environmental impacts, including the deterioration of marine ecosystems and landscape destruction. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) began designing systems to promote FRP boat recycling. Efforts advanced to improve dismantling and crushing technologies for discarded vessels and establish dedicated recycling facilities. Additionally, campaigns to prevent illegal dumping were conducted in collaboration with local governments, and mechanisms requiring vessel owners to bear part of the recycling costs were als
o considered. However, ensuring the profitability of recycling operations remained a challenge. While development progressed on technologies to reuse discarded FRP as building materials or fuel, widespread implementation took time.

During the 2010s, efforts to resolve the FRP waste vessel problem intensified. In 2015, the "National FRP Waste Vessel Recycling Promotion Council" was established, advancing industry-wide initiatives. Specifically, shredding technology for used FRP significantly improved, leading to increased cases of its use as recycled material in road paving and construction materials. Furthermore, the government expanded subsidies for vessel disposal to a maximum of 500,000 yen per case and launched model projects in collaboration with local governments. As a result, by 2018, the proper disposal rate for FRP vessels reached 65%. However, approximately 35% (about 1,750 vessels annually) remained untreated or illegally dumped.

Entering the 2020s, reports indicate that while approximately 6,000 vessels are scrapped annually, around 800 are illegally dumped without proper processing. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) established over 10 dedicated dismantling facilities nationwide, creating a system capable of processing over 2,000 scrap vessels annually. Furthermore, companies like Mitsubishi Chemical and Sumitomo Chemical have developed chemical recycling technologies, advancing efforts to reuse waste FRP as building materials and fuel. Additionally, municipalities along the Seto Inland Sea enacted the "Seto Inland Sea Waste Vessel Management Ordinance" in 2020, mandating notification to owners and introducing penalties. This reduced the abandonment of waste vessels by over 10% annually. However, the high average disposal cost of over ¥200,000 per vessel remains a persistent challenge. Internationally, efforts to share waste ship recycling technology wi
th neighboring countries like South Korea and the Philippines are advancing. The FRP waste ship issue is positioned as part of reducing marine plastic pollution and is a critical challenge for protecting the marine environment. While technological innovation and strengthened regulations have brought some improvement, the need for cost reduction and increased owner awareness remains unchanged.

FRP廃船の不法投棄問題 - 日本全国 - 2004年から2020年代の歴史と現状

FRP廃船の不法投棄問題 - 日本全国 - 2004年から2020年代の歴史と現状

FRP(繊維強化プラスチック)製プレジャーボートは、耐久性と軽量性から普及しましたが、その廃棄処理が課題となっています。2004年時点では、年間約5000隻が廃棄され、そのうち約1000隻が沿岸部や河川敷で不法投棄されていました。不法投棄は環境への深刻な影響を及ぼし、海洋生態系の悪化や景観破壊が問題視されました。

これに対し、国土交通省はFRP廃船のリサイクル推進に向けた制度設計を開始。廃船の解体・粉砕技術の向上や専用リサイクル施設の整備が進められました。また、自治体と連携した不法投棄防止キャンペーンが展開され、船舶所有者にリサイクル費用の一部負担を求める仕組みも検討されました。しかし、リサイクル事業の採算性確保が課題であり、廃FRPの建材や燃料としての再利用技術の開発が進む一方、広範な導入には時間を要しました。

2010年代には、FRP廃船問題の解決に向けた動きがさらに活発化しました。2015年には「全国FRP廃船リサイクル推進協議会」が設立され、業界全体での取り組みが進みました。具体的には、使用済みFRPの粉砕技術が大幅に改善され、リサイクル材として道路舗装や建設資材に利用される事例が増加しました。また、政府は廃船処理の補助金を1件あたり最大50万円に拡充し、自治体と連携したモデルプロジェクトを展開。その結果、2018年時点でFRP廃船の適切処理率は65%に達しましたが、依然として約35%(年間約1750隻)が未処理または不法投棄されている状況でした。

2020年代に入ると、年間約6000隻が廃棄される中、約800隻が適切に処理されないまま不法投棄されているとの報告があります。これを受けて、国土交通省は全国で10カ所以上の専用解体施設を新設し、年間2000隻以上の廃船を処理可能な体制を整備しました。さらに、三菱ケミカルや住友化学などの企業が化学リサイクル技術を開発し、廃FRPを建材や燃料として再利用する取り組みが進められています。

また、瀬戸内海沿岸の自治体では、2020年に「瀬戸内海廃船管理条例」を施行し、所有者への通知義務化やペナルティの導入を実施。これにより、廃船の放置が年間10%以上減少しました。一方で、処理コストが平均1隻あたり20万円以上かかる点が引き続き課題です。

国際的にも、韓国やフィリピンなどの近隣諸国と廃船リサイクル技術の共有が進められています。FRP廃船問題は、海洋プラスチック削減の一環として位置づけられ、海洋環境保護のための重要な課題となっています。技術革新や制度強化により一定の改善が見られるものの、コスト削減や所有者意識の向上が求められる状況は変わりません。

Tuesday, February 3, 2026

Strengthening Waste Dumping Regulations at the North Sea Protection Conference - August 1995 At the North Sea Protection Conference held in 1995, it was agreed to completely ban the dumping of hazardous waste into the North Sea by 2020. This agreement aims for a significant reduction in the over 10,000 tons of hazardous waste currently dumped into the North Sea annually. The targeted substances include heavy metals such as lead, mercury, and cadmium, as well as highly toxic chemicals like PCBs (polychlorinated biphenyls) and dioxins. These pose severe adverse effects on marine ecosystems, particularly burdening fishery resources.

Strengthening Waste Dumping Regulations at the North Sea Protection Conference - August 1995 At the North Sea Protection Conference held in 1995, it was agreed to completely ban the dumping of hazardous waste into the North Sea by 2020. This agreement aims for a significant reduction in the over 10,000 tons of hazardous waste currently dumped into the North Sea annually. The targeted substances include heavy metals such as lead, mercury, and cadmium, as well as highly toxic chemicals like PCBs (polychlorinated biphenyls) and dioxins. These pose severe adverse effects on marine ecosystems, particularly burdening fishery resources.

North Sea coastal nations including France, Germany, Denmark, the Netherlands, and Norway have established a policy to gradually reduce dumping volumes by 2020 and ultimately achieve zero dumping to meet these reduction targets. Meanwhile, the UK, facing pressure from major domestic chemical companies like ICL (Imperial Chemical Industries), Union Carbide, and pharmaceutical firms, did not sign up to the complete ban on dumping. Consequently, the UK is expected to continue dumping approximately 2,000 tons of waste into the North Sea annually.

This agreement is expected to significantly impact the improvement of North Sea water quality. France and Germany have announced plans to allocate a budget of 500 million euros (approximately 65 billion yen) for the development of waste recycling facilities. Furthermore, the Norwegian government intends to invest 10 million euros (approximately 1.3 billion yen) annually in developing waste treatment technologies, advancing efforts toward the goal of zero ocean dumping.

While these North Sea protection initiatives are expected to benefit fishery resources and tourism, the chemical industry is being called upon to transition toward sustainable management practices, including waste recycling and harmless treatment.

北海保護会議廃棄物投棄規制強化 - 1995年8月

北海保護会議廃棄物投棄規制強化 - 1995年8月

1995年に開かれた北海保護会議では、北海への危険廃棄物投棄を2020年までに完全に禁止することが合意されました。この合意により、現在、年間で約10000トン以上が北海に投棄されている有害廃棄物の大幅な削減が目指されています。対象となるのは、鉛、水銀、カドミウムなどの重金属に加え、PCB(ポリ塩化ビフェニル)やダイオキシンといった極めて毒性の強い化学物質です。これらは海洋生態系への悪影響が深刻で、特に漁業資源への負担が顕著です。

フランスやドイツ、デンマーク、オランダ、ノルウェーなどの北海沿岸諸国は、こうした有害廃棄物の削減目標を達成するため、2020年までに投棄量を段階的に縮小し、最終的にはゼロにする方針を固めています。一方、イギリスは国内の主要化学企業であるICL(インペリアル・ケミカル・インダストリーズ)やユニオン・カーバイド、製薬企業などの業界からの圧力を受け、投棄の完全停止に調印しませんでした。これにより、イギリスは年間約2000トンの廃棄物を引き続き北海に投棄する可能性が指摘されています。

この合意は、北海の水質改善に大きな影響を与えると期待されており、フランスとドイツでは廃棄物のリサイクル施設の整備に5億ユーロ(約650億円)の予算を計上する計画が発表されています。また、ノルウェー政府は廃棄物の処理技術開発に年1000万ユーロ(約13億円)を投入し、海洋投棄ゼロの目標に向けた取り組みを進める方針です。

このように、北海保護の取り組みは漁業資源の保護や観光業への好影響を期待される一方、化学業界には廃棄物のリサイクルや無害化処理など、持続可能な経営への転換が求められています。

Improper Medical Waste Disposal Issue in Sapporo, Hokkaido - January 2011 Approximately 10 tons of improperly disposed medical waste were discovered abandoned in public areas in Sapporo, Hokkaido. The abandoned waste included infectious materials such as approximately 5,000 syringes, blood-stained gauze, and about 200 bags of used gloves. It was primarily found on vacant lots and former warehouse sites. This has raised concerns about the risk of infectious diseases affecting approximately 300 households in the surrounding area. Investigations revealed that five medical facilities, including hospitals and clinics, were involved in the disposal.

Improper Medical Waste Disposal Issue in Sapporo, Hokkaido - January 2011 Approximately 10 tons of improperly disposed medical waste were discovered abandoned in public areas in Sapporo, Hokkaido. The abandoned waste included infectious materials such as approximately 5,000 syringes, blood-stained gauze, and about 200 bags of used gloves. It was primarily found on vacant lots and former warehouse sites. This has raised concerns about the risk of infectious diseases affecting approximately 300 households in the surrounding area. Investigations revealed that five medical facilities, including hospitals and clinics, were involved in the disposal.

As an emergency response, Sapporo City began waste removal operations. Approximately 7 tons have been processed so far, and disinfection work has also been carried out. The cost for processing the remaining untreated waste is estimated at around 30 million yen, and the city plans to secure the budget. Additionally, the medical facilities involved in the disposal were fined a total of 20 million yen.

As a recurrence prevention measure, the city will hold four annual training sessions for medical facilities to ensure proper medical waste disposal. It has also distributed 10,000 awareness posters throughout the city to alert residents. This has led to a growing recognition of the necessity for proper medical waste management. This issue highlights the importance of suppressing infectious disease risks and strengthening waste management.

北海道札幌市における医療廃棄物不適正処理問題 - 2011年1月

北海道札幌市における医療廃棄物不適正処理問題 - 2011年1月
北海道札幌市で、不適切に処理された約10トンの医療廃棄物が公共の場に放置されていることが発覚しました。放置された廃棄物には、約5000本の注射器や血液付きのガーゼ、約200袋の使用済み手袋など感染性廃棄物が含まれ、空き地や倉庫跡地を中心に発見されています。これにより、周辺住民約300世帯に感染症のリスクが及ぶことが懸念されています。調査の結果、病院や診療所など5つの医療施設が廃棄に関与していることが判明しました。

札幌市は緊急対応として、廃棄物の除去作業を開始。これまでに約7トンが処理され、消毒作業も実施されています。未処理分の廃棄物処理には約3000万円の費用が見込まれており、市は予算を確保する方針です。また、廃棄に関与した医療施設には罰金総額2000万円が科されました。

再発防止策として、市は医療廃棄物の適正処理を徹底するため、医療施設を対象にした講習会を年4回開催。また、市内に啓発ポスター1万部を配布し、住民への注意喚起を実施。これにより、医療廃棄物の適正管理の必要性が広く認識されつつあります。この問題は、感染症リスク抑制と廃棄物管理の強化の重要性を示しています。

The Evolution of U.S. Grain Supply and Demand - From the 1990s to the 2020s

The Evolution of U.S. Grain Supply and Demand - From the 1990s to the 2020s

1990s According to a Worldwatch Institute report, grain prices rose 39% over the three years ending in 1996. This was driven by China's rapidly increasing feed demand, particularly the expansion of grain imports accompanying growth in meat production. While U.S. grain exports increased, domestic stockpiles were declining, creating a need for stabilization in the international market.

2000s In the early 2000s, corn demand surged due to the expansion of bioethanol production. This triggered a sharp rise in grain prices, making food price inflation a global issue. Simultaneously, major grain producers like Brazil and Argentina increased their exports, intensifying competition in the U.S. export market.

2010s: During the 2010s, China established itself as the world's largest grain importer. U.S. soybeans and corn became central supplies for China's food security policy. However, U.S.-China trade friction temporarily led China to shift imports to other countries like Brazil. Additionally, climate change impacts caused harvest fluctuations due to floods and droughts, becoming a significant issue.

2020s: Entering the 2020s, ample rainfall in the U.S. Midwest boosted grain production, with bumper corn and soybean harvests projected for 2024. However, high production levels in Brazil and other countries, coupled with intensifying market competition, drove grain prices to their lowest levels since 2020. China's grain demand remains high, with imports reaching 160 million tons in 2023, accounting for a quarter of the global total. American farmers face pressure on profits due to falling prices and are implementing cost-cutting measures. Furthermore, concerns exist that Brazil is expanding its share of the Chinese market, potentially reducing the U.S.'s export market share.

アメリカの穀物需給の変遷 - 1990年代から2020年代まで

アメリカの穀物需給の変遷 - 1990年代から2020年代まで

1990年代
ワールドウォッチ研究所の報告によれば、1996年までの3年間で穀物価格が39%上昇。この背景には、中国の飼料需要の急増があり、特に肉類生産の増加に伴う穀物輸入量の拡大が影響していました。アメリカの穀物輸出量は増加する一方で、国内備蓄は減少傾向にあり、国際市場の安定化が求められていました。

2000年代
2000年代初頭には、バイオエタノール生産の拡大に伴い、トウモロコシ需要が急増。これにより、穀物価格の高騰が発生し、食料価格の上昇が世界的な問題として浮上しました。同時に、穀物生産国であるブラジルやアルゼンチンが輸出量を拡大し、アメリカの輸出市場における競争が激化しました。

2010年代
2010年代には、中国が最大の穀物輸入国としての地位を確立。アメリカ産大豆やトウモロコシは、中国の食料安全保障政策の中心的な供給源となりました。しかし、米中貿易摩擦の影響で、一時的に中国がブラジルなど他国からの輸入にシフトする場面も見られました。また、気候変動の影響で、洪水や干ばつによる収穫量の変動が問題となりました。

2020年代
2020年代に入ると、アメリカ中西部では十分な降雨により穀物生産量が増加し、2024年にはトウモロコシと大豆の豊作が予測されています。しかし、ブラジルなど他国の高い生産量や市場競争の激化により、穀物価格は2020年以来の低水準に落ち込みました。中国の穀物需要は依然として高く、2023年には輸入量が1億6000万トンに達し、世界全体の4分の1を占めるまでに拡大。アメリカの農家は価格低下による収益圧迫に直面しつつ、コスト削減策を講じています。また、ブラジルが中国市場でのシェアを拡大し、アメリカの輸出市場シェアの低下が懸念されています。

Monday, February 2, 2026

Annual industrial waste amounts to 400 million tons. Given the shortage of processing facilities and the need for effective resource utilization, the 5R approach (Refine, Reduce, Recycle, Reuse, Reconvert to Energy) is essential.

Annual industrial waste amounts to 400 million tons. Given the shortage of processing facilities and the need for effective resource utilization, the 5R approach (Refine, Reduce, Recycle, Reuse, Reconvert to Energy) is essential.
Sumieito Co., Ltd., headquartered in Himeji City, Hyogo Prefecture, is a leading company in the recycling sector. It has established a unique system as its core business, "turning industrial waste into resources." With approximately 50 employees, the company generates sales of 4.4 billion yen. We spoke with President Eiji Kumano.
Creating resources through technology. The company was founded in 1977. It was established as a management and operations company to prevent secondary pollution when mining companies recovered zinc and other materials from waste. President Kumano joined the company in 1979, two years after its founding. "After graduating from university, I joined the company my uncle managed. Being young at the time, I must admit I felt a bit embarrassed about working with garbage."
Back then, recycling meant zinc recovered from non-ferrous industry waste was reused within that same industry—intra-industry recycling was the norm. Initially, the company followed this conventional approach. However, during the recession triggered by the 1979 Second Oil Crisis, the search for more efficient business methods led to the idea of cross-industry recycling. The recession became the catalyst for challenging conventional wisdom.
"Since it's waste, we'd offer to take it off their hands instead of charging disposal fees. For the generating company, this actually reduced their processing costs. Crucially, this business model also meant the companies receiving the recycled raw materials paid less than for conventional materials. We were relentlessly focused on economic viability from the very start."
When we started the business in 1980 and went to present to cement companies, production-side personnel were reluctant to approve, asking who would take responsibility and how if using waste as raw material affected the product. After much effort, we finally secured an agreement for three trial deliveries of 500 tons each. "However, back then, the companies generating the waste also lacked awareness, and the waste sent from factories presented various challenges. We worked through the night sorting it and somehow managed to deliver it."
After the three trial deliveries, the production manager who had opposed us said, "Mr. Kumano, this is truly an era where we create resources through technology," and decided to accept our solution. "Hearing those words, the sense of inferiority I'd felt about my work vanished. My mindset shifted to recognizing that we were creating resources. Moreover, we were receiving gratitude from both the waste-generating companies and the receiving companies. That was the moment I realized this was work worthy of dedicating my entire life to."
President Kumano was 24 at the time. The business he launched this way gradually expanded its client base, accumulated know-how, and built a system. The recycling system the company established over 20 years is illustrated in the diagram below.
For example, waste from various companies—including sludge and spent solvents—is combined and homogenized into a slurry. This is then used as fuel by cement companies. Similarly, large quantities of eggshells discarded by food companies are utilized as cement raw materials. In other words, within Sumi Eight's recycling system, nothing is truly waste anymore. "For recycling to succeed, three conditions are essential: low cost, stability, and safety.
Through experiencing unfavorable conditions for our company, such as repeated yen appreciation, we have learned what is necessary to meet these conditions. Expanding our network to gather information and efficiently supply recycled raw materials, coupled with deep market knowledge, leads to economic viability. If our recycled raw materials are not superior to current raw materials in both cost and quality, the business has no value. It requires not just the idealistic notion that recycling should be done, but constant competitiveness and adaptation to changing business conditions."
"We aim to become an indispensable company. To date, the company has coordinated recycling for over 1,000 businesses. Beyond its three domestic locations, it established an office in Seoul based on the principle that 'building a wide-ranging recycling coordination network is more rational.' While the company has grown steadily since its founding in 1977, it senses a shift in societal trends over recent years.
The initial catalyst was the 1992 Earth Summit. "Before that, companies were reluctant to publicize that they recycled waste as raw materials. However, since the Summit, the trend has shifted—companies now see it as enhancing their image and are open to promoting it." Furthermore, with initiatives like the Zero Emission Concept proposed by the United Nations University in the late 1990s, the company's efforts seem ahead of their time.
"I suppose you could say the spotlight has turned to what we've been working on, accelerating the trend. However, such initiatives require breaking through the barriers of conventional wisdom, and it's not something one company can do alone. It becomes possible only when symbiotic relationships with other companies are established. Our company doesn't aim to be big or powerful; we strive to be indispensable. With 50 employees, we generate annual sales of 4.4 billion yen.
For a venture company, this size is probably the right fit." Based on this philosophy, the company has not pursued an expansion strategy but has instead focused on maximizing the use of its existing systems. While it operates its own recycling plant, over half of its processing is still outsourced to partners, and transportation and distribution are also contracted out. Establishing a joint venture with the Hitachi Chemical Group in 1995 was also part of this approach.
"We are confident in our information assets, such as our network and know-how. Going forward, technological capability is the challenge. We hope to collaborate with technology-holding entities to create new markets." The company plans to list its shares (over-the-counter) in the fall of 2001. As the global trend toward a zero-waste recycling society, including waste resource recovery, gains momentum, the company's role is likely to become even more significant in the 21st century.

年間4億トンにも上る産業廃棄物。

年間4億トンにも上る産業廃棄物。
処理場不足や資源の有効活用の面からも、5R(Refine、Reduce、Recycle、Reuse、Reconvert to Energy)が求められています。
兵庫・姫路市に本社を置くスミエイト株式会社は、そのリサイクル分野で「産廃を資源に変える」独自のシステムをビジネスとして確立した先進企業であり、社員約50名で44億円を売り上げています。
熊野英介社長にお話を伺いました。
資源を技術で創る。
同社の創立は1977年。
鉱業会社が廃棄物から亜鉛などを回収する際の二次公害防止のための管理運用会社として設立されました。
熊野社長は創業2年後の1979年に入社しました。
「大学卒業後、おじが経営する会社に入社したわけですが、当時は若かったこともあり、正直言ってゴミを扱う仕事を恥ずかしく思う気持ちもありました」。
当時のリサイクルは、非鉄業界の廃棄物から回収された亜鉛は非鉄業界で資源化する、つまり同業種内でのリサイクルが常識でした。
同社においても創立当初はセオリーどおりのリサイクルを行なっていましたが、1979年の第2次オイルショックによる不況下に、より効率のよい事業方式を探る中から異業種間のリサイクルという発想が生まれたといいます。
常識を覆すきっかけになったのが不況だった。
「廃棄物ですから、処理費用がかかるところを逆に引き取らせてくれと申し出るわけで、出す企業にすれば処理コストがかえって安くすむわけです。
この事業で重要なのは再資源化された原料を受け入れる企業にとっても、それまでの原料より安くなること。
経済性には最初から徹底的にこだわりました」。
1980年に事業を始めて問題なく、セメント会社にプレゼンテーションに行ったところ、原料に廃棄物を使って製品に影響がでたら誰がどのように責任を取るのかと、生産サイドの人がなかなかオーケーしてくれませんでした。
やっとのことで、とりあえず500トンを3回試験納入する合意を得ました。
「ところが当時は廃棄物を出す企業にも認識がなく、工場から送られてくる廃棄物には色々難題があります。
徹夜で分別をして、なんとか納入しました」。
3回の試験納入が終わったとき、反対していた生産側の担当者は「熊野さん、これからは資源を技術で創りだす時代なんですね」と言い、受け入れを決めてくれたといいます。
「この言葉を聞いて、それまで持っていた自分の仕事への引け目がなくなり、我々は資源を創りだしているんだという意識に変わりました。
しかも廃棄物の排出企業、受け入れ企業双方から感謝してもらえる。
この仕事は一生を費やすに足りる仕事だと思った瞬間です」。
熊野社長が24歳のときだったといいます。
こうして立ち上げた事業は、少しずつ対象企業を広げ、ノウハウを蓄積し、システムを作りあげてきました。
20年かけて確立した同社のリサイクルシステムは、以下の図のようになっています。
例えば各社から出る廃棄物、含む汚泥、廃溶剤などを複合・均一化してスラリー状にして、セメント会社で燃料として使ったり、食品会社から大量に排出される卵の殻をセメント原料に使ったりします。
つまり、スミエイトのリサイクルシステムの中では、もはや廃棄物と呼ばれるものは存在しません。
「リサイクルの成立には、安価・安定・安全が条件になります。
度重なる円高など、我が社にとっては不利な状況を経験する過程で、条件を満たすには何が必要かを学んできました。
ネットワークを広げて情報収集し再生原料を効率的に供給することに加え、マーケットを熟知することが経済性につながります。
現状の原料より我が社の再生原料の方が経済的にも品質的にも良くなければ、事業の価値がないわけです。
リサイクルすべしという理想論だけでなく、常に競争力と業態変化が必要とされます」。
「なくてはならない会社を目指す。
現在までに同社がリサイクル・コーディネートをした企業は1000社を超え、国内3カ所に加え、 「リサイクルコーディネートネットワークは広範囲で構築したほうが合理的」との考えからソウルにも事業所を設けています。
1977年の創立以来順調に成長してきた同社ですが、ここ数年社会の流れが変わりつつあることを感じています。
最初のきっかけは1992年の地球サミットだった。
「それまでは、企業側も廃棄物をリサイクルして原料としていることは口外したがらない状況でした。
ところがサミット以来、むしろ企業のイメージアップにつながるということで、宣伝してくれても構わないという流れになってきました」。
さらに1990年代後半には国連大学によりゼロエミッション構想が提唱されるなど、同社の取り組みは時代の先取りといった感もあります。
「私たちが取り組んできたことが脚光を浴び、流れが加速してきたといったところでしょうか。
しかし、こうした取り組みはそれまでの常識の壁を打ち破る必要性もあり、1社でできることではありません。
各企業との共生が成り立ってこそ可能になることでしょう。
我社は大きい会社、強い会社ではなく、なくてはならない会社を目指しています。
従業員も50名で年商44億円を上げています。
ベンチャーとしてはこのくらいの人数が適正規模でしょう」。
こうした考えに基づき、会社組織にも拡大路線は取らず、現存のシステムを最大限活かす方向で進んできました。
自社でもリサイクル工場を持っていますが、現在も半分以上は提携先に加工を依頼しており、運搬・流通なども外注しています。
1995年に日立化成グループと合弁会社を設立したのも、こうした発想の一環といえるでしょう。
「我々はネットワークやノウハウなど、情報面には自信があります。
今後は技術力が課題。
技術を持つところと連携して新しい市場を作っていけたらと思っています」。
2001年の秋には株式上場(店頭公開)を予定しています。
廃棄物の再資源化を含むゴミゼロ循環社会への指向が世界的な潮流となる中で、21世紀には同社の役割はさらに大きなものになっているでしょう。

■As environmental business commercialization and environmental countermeasures accelerate, plant engineering expertise in environmental matters is increasingly essential. To transform environmental initiatives and countermeasures into actual businesses and plants, various challenges must be overcome, including feasibility studies, plant R&D and design, manufacturing, material procurement, construction, and commissioning.

■As environmental business commercialization and environmental countermeasures accelerate, plant engineering expertise in environmental matters is increasingly essential. To transform environmental initiatives and countermeasures into actual businesses and plants, various challenges must be overcome, including feasibility studies, plant R&D and design, manufacturing, material procurement, construction, and commissioning.
■The growth of environmental businesses and the expansion of environmental countermeasures are driving increased demand for plant engineering with environmental expertise. To translate environmental-related businesses and countermeasures into concrete projects and plants, it is necessary to overcome various challenges including feasibility studies, plant R&D and design, fabrication, material procurement, construction work, and commissioning.
■Engineering by a select few. President Hitoshi Kaji hails from Chiyoda Corporation, one of Japan's top three specialized plant engineering firms. There, he spent 27 years involved in constructing petroleum refining plants and analyzing, evaluating, and commercializing various gasification and melting furnace technologies.
Driven by a desire to apply the expertise cultivated during this time across a broader range of fields, he spun out with fellow engineers in June 2000. After approximately six months of preparation, Energy Environment Design was established. "Our aim is not only to handle large-scale projects worth tens or hundreds of billions of yen, as we have done before, but also to provide consulting services from plant introduction to operation for smaller-scale projects, support the development of technical products, perform process design for facilities, conduct equipment layout design, and even develop our own proprietary technical products," stated President Kaji.
President Kaji stated, "This is largely an untapped area, especially in the energy and environmental fields, where there is a shortage of personnel with the necessary expertise, making it difficult for large engineering firms to cover." True to this vision, the company got off to a strong start. Through an engineer who learned of Kaji's establishment of this concept-driven company, Sanix requested participation in its waste plastic power generation project under consideration for commercialization in Tomakomai.
Sanix had been operating intermediate processing facilities for industrial waste plastics at over a dozen locations nationwide since 1998. To effectively utilize these facilities, they conceived the waste plastic power generation project. However, dedicated plastic incineration for power generation was a world first. This is why Energy Environment Design, possessing expertise in both power generation and waste treatment, was approached.
In this case, we proudly participated as one of the owner's engineering firms throughout the entire process: processing waste plastic into molten fuel, transporting it to the power plant, and generating electricity. We played a central role in project management, from the feasibility study through design, material procurement, construction management, and commissioning.
■Achieving this required balancing investment with required performance, which demands solid technical backing and know-how. Any plant engineering company with expertise in project management, starting with feasibility studies, possesses this. Our advantage lies in additionally having technical know-how in heat transfer and waste treatment," stated President Kaji.
The power plant was completed in June 2002 and began trial operations in August. Despite being newly established, demand for the company's engineering capabilities is growing. This includes participation in the Iwate Prefectural Industrial Technology Center's wood pellet stove development project, aimed at promoting wood biomass utilization. The company's role as a bridge, turning client ideas into concrete solutions, will likely continue to expand.
Research and development of proprietary technology is another pillar. However, from the outset, alongside these consulting services, the company has also advanced its own proprietary technology development and the product development and sales leveraging that technology.
"Engineering-based consulting services, if done well, carry an inherent contradiction: clients absorb the know-how and may no longer require similar work. That's why we're also advancing proprietary technology development as another pillar of our business," stated President Kaji. The company is advancing technology development broadly in two fields: "Energy" and "Environment." In the energy field, it is currently aiming to commercialize a compact heat storage burner unit and a cooking unit.
"Heat storage burners were developed in Europe and the US in the 1990s. They improve thermal efficiency by reusing residual heat from combustion exhaust gases, reducing fuel consumption to less than half of conventional systems. Development in Japan, led primarily by NEDO, has advanced significantly, and Japan is now a top runner in this technology. However, research into miniaturization had been virtually nonexistent," President Kaji explained. ■Therefore, the company embarked on miniaturization.
Receiving development grants from Ota Ward, the company succeeded in miniaturization and cost reduction. This was achieved through ceramic heat storage heat exchange technology, heat radiation plates, and integrating the previously two-unit heat storage burner into a single unit. It can be incorporated as a standard component into existing food processing machinery and is expected to have a wide range of applications. The first unit was already delivered to a major food processing machinery manufacturer this summer.
The company focused on transporting waste plastics. It developed a compression molding device that dissolves the surface while compressing waste plastics. Although priced at about twice that of conventional compression balers, its compression ratio is approximately three times higher, and it eliminates the need for packaging materials. While inquiries exist, orders have not yet been secured, but the company remains hopeful. Additionally, it is researching technology to recover lead components from leaded glass and crystal glass.
This involves adding additives to crushed glass and heating it below 1500°C to vaporize the lead. Research for practical application is scheduled to conclude within 2002. This technology has already attracted attention from manufacturers utilizing lead glass in their products. Balancing this with the equipment sales business is a challenge. The company also handles website creation and software development.
In software, it developed a "Plastic Waste Discharge Data System." Using location and industry data for factories and workplaces nationwide, its proprietary inference engine calculates the amount of plastic waste discharged in a specified region. One unit has already been sold. The company's high development drive—spanning consulting, proprietary R&D, and software development—cannot be fully supported by its small, elite team of just five employees.
The company networks with experienced professionals, including those who have retired but possess substantial expertise, contracting them on a project-by-project basis. This approach enables the mobilization of over 50 personnel. Moving forward, the company aims to focus on selling products utilizing its proprietary technologies. "In terms of business maturity, we consider R&D and commercialization to be two-thirds of the journey. Only when the product is sold does it truly see the light of day. How we sell it going forward is now the major challenge."
Our consulting capabilities, based on advanced engineering technologies specialized in energy and the environment, and our R&D strength in proprietary technologies have already been proven. The challenge now is how to successfully balance our labor-intensive consulting business with equipment sales. The decisive moment for the company is approaching.

■環境ビジネスの事業化や環境対策が加速する中、環境に精通したプラントエンジニアリングが必要とされています。

■環境ビジネスの事業化や環境対策が加速する中、環境に精通したプラントエンジニアリングが必要とされています。
環境事業や対策の発想を実際の事業やプラントに昇華させていくためには、フィージビリティスタディ、プラントの研究開発・設計、製作、資材調達、建設工事、試運転などさまざまな課題をクリアしていかなければなりません。
■環境ビジネスの成長と環境対策の拡大に伴い、環境に詳しいプラントエンジニアリングの需要が高まっています。
環境関連のビジネスや対策を具体的な事業やプラントに落とし込むには、フィージビリティスタディ、プラントの研究開発・設計、製作、資材調達、建設工事、試運転など、さまざまな課題をクリアしていく必要があります。
■少数精鋭のエンジニアリング。
同社代表取締役の加治均さんは、プラント業界で日本の専業3社に数えられる千代田化工建設の出身。
そこで27年間、石油精製産業プラントの建設や各種ガス化溶融炉技術の分析・評価・商品化などに携わってきました。
こうした中で培われたノウハウをより幅広い分野で活かしたいとの思いから2000年6月に仲間のエンジニアと共にスピンアウト、約半年の準備期間を経て、エネルギー環境設計を設立しました。
「これまで手掛けてきた数十億円、数百億円の大規模案件だけでなく、より小規模な案件でのプラント導入から運営までのコンサルティング、技術商品の開発支援、設備のプロセス設計、機器の展開設計、さらには自社の独自技術商品の開発が当社の狙いです。
大手エンジニアリング会社がカバーしづらい領域で、特にエネルギー、環境分野ではノウハウを有する人材が少ないこともあり、ほとんど未開拓の状況です」と加治社長は述べています。
その狙い通り、滑り出しは上々でした。
加治さんがこのようなコンセプトの会社を設立したことを知ったエンジニアを通して、サニックスが苫小牧での事業化を検討していた廃プラ発電事業に参画を依頼されました。
サニックスでは98年から産業廃棄物系廃プラ中間処理業を全国十数箇所で展開しており、それらを有効活用するため廃プラ発電事業を発案しました。
とはいえ、プラスチック専焼発電は世界でも初めてのケースでした。
そこで、発電、廃棄物処理ともにノウハウを持つエネルギー環境設計に依頼がきたというわけです。
このケースでは、廃プラスチックの溶融燃料への加工、発電所までの輸送、そして発電の全過程にわたりオーナーズエンジニアリングの1社として参加し、フィージビリティスタディから設計、資材調達、施工管理、試運転までのプロジェクトマネジメントにおいて中心的な役割を果たしましたと自負しています。
■達成するためには、投資と要求される性能の兼ね合いが重要ですが、それには確固たる技術裏付けやノウハウが不可欠です。
フィージビリティスタディを始めとしたプロジェクトマネジメントの専門知識を持つプラントエンジニアリング会社であれば、どこでも保有しています。
当社の利点は、それに加えて熱伝達、廃棄物処理に関する技術に関するノウハウを持っていることです」と加治社長は述べています。
同発電所は2002年6月に完成し、8月から試運転を開始しています。
その後も、岩手県工業技術センターが木質バイオマスの利用を普及を目指し進めている木質ペレットストーブ開発プロジェクトに参画するなど、設立して間もないにもかかわらず、同社のエンジニアリング能力に対する需要が集まりつつあります。
クライアントのアイデアを具体的なものにする、その橋渡し役として同社の出番はまだまだ増えていくでしょう。
独自技術の研究開発はもうひとつの柱。
ただし当初より、こうしたコンサルティング事業とともに、自社による独自技術開発とその技術を活かした商品開発・販売も進めています。
「こうしたエンジニアリング系のコンサルティング事業はうまく仕上げればクライアント自身がノウハウを吸収し、同様の仕事がこないようにするという自己矛盾を抱えています。
そこで事業のもうひとつの柱として独自の技術開発も進めています」と加治社長は述べています。
同社では、大きく分けて「エネルギー」と「環境」の2つの分野で技術開発を進めています。
エネルギー分野では現在、商品化を目指しているのが小型蓄熱式バーナーユニットおよび調理用ユニットです。
蓄熱式バーナーは、欧米で1990年代に開発され、燃焼排ガスの残熱を再利用することで熱効率を向上させ、燃料消費を従来の半分以下に抑えることができます。
日本でもNEDOを中心に開発が進み、技術的には今や日本がトップランナーとなっています。
しかし、小型化の研究はほとんど行われていませんでした」と加治社長は述べています。
■そこで、同社は小型化に着手しました。
大田区からの開発助成金なども受けて、セラミックス製の蓄熱式熱交換技術や熱放射板、従来2台必要だった蓄熱バーナーの単体化などにより、小型化と低コスト化に成功しました。
汎用部品として既存の食品加工機械に組み込むことが可能で、また幅広い用途が期待されています。
すでに今年の夏には、1号機が大手食品加工機械メーカーに納入されました。
同社では、廃プラスチックの輸送に着目しました。
廃プラスチックを圧縮しながら表面を溶解する圧縮成形装置を開発しました。
価格は従来の圧縮梱包装置の約2倍ですが、圧縮率は約3倍で、梱包資材が不要な点がメリットです。
引き合いはあるものの、まだ受注には至っていませんが、期待しています。
また、鉛ガラスやクリスタルガラスから鉛成分を回収する技術も研究しています。
粉砕したガラスに添加物を加え、1500℃以下で加熱することにより鉛を気化させるものです。
2002年中には実用化に向けた研究を終了させる予定です。
この技術はすでに鉛ガラスを製品に利用しているメーカーの注目を集めています。
装置販売事業との両立が課題。
また同社では、ホームページの作成やソフトウェア開発なども手掛けています。
ソフトウェアでは、「廃プラスチック排出量データシステム」なるものを開発しました。
全国の工場や事業所などの立地、業種データをもとに、独自の推論エンジンにより、指定した地域でどれぐらいの廃プラスチックが排出されるかを計算するものです。
すでに1本販売済みです。
コンサルティング事業、独自技術の研究開発、さらにはソフトウェア開発と、同社の高い開発意欲は、少数精鋭の5名の社員だけでは支えきれません。
定年退職したが十分な経験と能力を持つ人材などとネットワークを組み、プロジェクトごとに契約しています。
これにより、50名以上のマンパワーを動員することも可能になっています。
今後は、独自開発した技術を活用した商品の販売に力を入れていきたいと考えています。
「事業の成熟度合いでいえば、研究開発と商品化で3分の2、それを商品として販売して、ようやく日の目を見られると考えています。
これからはどのように販売していくかが大きな課題です」。
エネルギー、環境に特化した高度なエンジニアリング技術に基づくコンサルティング能力と、独自技術の研究開発力はすでに証明されています。
これからは労働集約型のコンサルティング事業とともに、装置販売事業をいかに両立させていくか。
同社にとって勝負の時期が近づいています。

Sunday, February 1, 2026

Until recently, the prevailing mindset in construction was "scrap and build"—demolishing and rebuilding structures after a certain number of years. Subsequently, the concept of "rebuild" emerged, focusing on maintaining and preserving buildings longer, leading to large-scale renovations typically occurring around 10 to 15 years after completion. Initially, the primary goal of these renovations was largely economic: to reduce the frequent repair costs associated with frequent use.

Until recently, the prevailing mindset in construction was "scrap and build"—demolishing and rebuilding structures after a certain number of years. Subsequently, the concept of "rebuild" emerged, focusing on maintaining and preserving buildings longer, leading to large-scale renovations typically occurring around 10 to 15 years after completion. Initially, the primary goal of these renovations was largely economic: to reduce the frequent repair costs associated with frequent use.
However, in recent years, attention has also begun to focus on renovation work from the perspective of reducing environmental impact. This includes conserving resources through extending building lifespans and reducing construction waste that would otherwise have nowhere to go. Within this context, Yashima Kogyo Co., Ltd. has been quick to recognize renovation work as an environmental business, differentiating itself through environmentally responsive renovation projects. We spoke with President Hiroyuki Kosato.
The unique challenges of renovation work. While often grouped together as "renovation work," it encompasses a wide range of construction techniques. Starting with pre-construction surveys, it includes scaffolding erection, exterior wall repairs, structural reinforcement, roof waterproofing, finishing work, exterior wall cleaning, and more. Since its establishment in 1964, the company has operated under the corporate philosophy of "contributing to society through stock maintenance," primarily handling renovations of apartment buildings and commercial buildings.
Leveraging accumulated, proven technical expertise, it has steadily built a solid track record. Recognizing several years ago that the shift in societal focus toward environmental sustainability meant renovation work—previously seen merely as extending a building's lifespan—was now inherently environmentally conscious, the company anticipated that societal demand for such work would inevitably grow.
"Furthermore, renovation work presents unique challenges distinct from new construction. The most significant of these is the necessity to proceed with work while residents or workers maintain their daily lives. This makes safety a fundamental requirement, and environmental consideration becomes an indispensable factor under constant public scrutiny."
Indeed, in the apartment renovation projects that form the company's core business, presentations to residents by bidding contractors are common before work begins. In recent years, the company notes, "demands for proactive environmental consideration have grown louder with each passing year." There is a rising sentiment that, given the choice, residents prefer the more environmentally conscious option for the same work. Consequently, the company launched its environmentally responsive renovation services in July 1999.
The aim is to move beyond being merely a renovation contractor by further advancing environmental responsiveness within a field that inherently carries strong environmental implications. This seeks to enhance added value as an environmentally compliant service. The renovation work itself is being transformed into an environmentally responsive model. What exactly constitutes environmentally responsive renovation work? Its pillars can be broadly divided into two: 1. Reducing waste at the construction site, and 2. Reducing volatile organic compounds (VOCs) in construction methods.
First, regarding waste reduction: significant amounts of waste are generated at construction sites. Industrial waste alone, such as protective vinyl sheeting and concrete debris, amounted to 7.56 cubic meters per 10 million yen of contract value in the company's FY1998 results—equivalent to 1.26 4-ton trucks. Furthermore, sites generate not only industrial waste but also items like beverage cans and lunch boxes.
At a site employing 500 workers, the volume becomes substantial. To reduce this waste, measures include sorting and using returnable containers. They implement 10 categories of sorting. The process is thorough, even requiring each can to be crushed before disposal. "Educating the site crew was challenging at first, but once accustomed, it's implemented relatively smoothly," they note. Furthermore, they adopted returnable containers for the 18-liter paint cans used.
Previously, paint cans were difficult to clean, making reuse and recycling nearly impossible, resulting in them being disposable. Therefore, in cooperation with paint manufacturers, a returnable container system was developed. This involves placing paint inside a vinyl bag to prevent internal contamination before placing it in the can. Used cans are collected by retailers and returned to the manufacturer under a deposit system. This system is relatively uncommon in Japan.
"This initiative involves a bit of extra effort, and while it's a deposit system, costs are slightly higher than before. That said, the benefits are significant: reduced waste disposal costs and a tidy work environment free of litter." The company is also on track to achieve its FY1999 targets: a 50% reduction in volume and a 30% reduction in weight compared to FY1998.
Previously, waste disposal costs averaged about 1.2% of the company's contract value. Even a simple calculation shows this will be halved, representing a modest but significant reduction. Meanwhile, VOC reduction efforts include switching to water-based systems for paints and urethane waterproofing. While some European and American countries have legislated restrictions on VOC usage, Japan has numerous guidelines and recommendations from various organizations but no formal regulations.
However, it is considered certain that VOCs will eventually become a regulated substance in Japan. "Regardless of regulations, water-based paints are now available in a wide variety and quantity, and their price and performance are on par with solvent-based paints. So, there's no reason not to use the better option." By adding environmentally conscious services to conventional renovations, the company aims to differentiate itself from competitors. Asbestos removal is also an essential part of the company's technical capabilities.
The company removed 75 cubic meters of sprayed asbestos in fiscal year 1998. This asbestos was used as fireproof coating and soundproofing material on ceilings and walls in schools, factories, warehouses, and similar facilities. The company launched its website in October 1999, and inquiries specifically about asbestos removal work have been constant ever since. Recently, requests for asbestos removal from factories planning to obtain ISO 14001 certification have increased, and this trend is expected to continue.
Concurrently, the company is seeing a growing demand not only for removing sprayed asbestos but also for handling asbestos products like slate sheets and boards. The company's future goal is comprehensive environmentally conscious renovation work. This involves enhancing environmental functionality during renovations, such as installing distributed clean energy systems, rooftop greening, recycled water systems, and applying insulating film to energy-saving windows. The company aims to achieve this by collaborating with various firms on diverse technologies.
President Kosato is highly motivated. "Beyond simply extending building lifespans, we expect increasingly diverse customer demands for environmental considerations to emerge. Ultimately, we want to pioneer a new approach to environmentally conscious renovation work," he states. Behind these words lies a proposal for new construction projects, viewed through the lens of long-lasting, environmentally considerate renovation work. The company plans to obtain ISO 14001 certification within 2000.

しばらく前まで、建築物はある程度の年数が経ったら壊して建て直す「スクラップアンドビルド」という考えが当たり前だった。

しばらく前まで、建築物はある程度の年数が経ったら壊して建て直す「スクラップアンドビルド」という考えが当たり前だった。
その後、建物をより長く維持保全しようという「リビルド」の考えから竣工後10~15年程度で大規模改修工事が行なわれるようになる。
当初の改修工事の狙いは、頻繁に使われる修繕コストを抑えるという経済的な理由が大きな部分を占めていた。
しかしながら近年はそれに加え、建物の長寿命化による省資源、行き場のなくなる建設廃棄物の削減といった環境負荷低減の側面から、改修工事に注目が集まり始めている。
そうした中、業界内ではいち早く改修工事を環境ビジネスとして捉え、環境対応型の改修工事で差別化を図っているのがヤシマ工業株式会社だ。
小里洋行社長にお話を伺った。
新築工事とは違った難しさ。
改修工事とひとくくりにしているが、その中身は広範な工事技術から成り立っている。
工事前の調査に始まり、足場架設、外壁補修、構造補強、屋上防水、仕上げ工事、外壁洗浄などなど。
同社は1964年の設立以来、「ストックメインテナンスを通じて社会に貢献する」との企業理念で、集合住宅を主力に、商業ビルなどの改修工事を手掛けてきた。
集積された確かな技術力で、これまで堅調に実績を積み重ねている。
環境支持という社会背景の変化により、これまで建物の延命化ということで極々普通に営んできた改修工事業が、環境配慮につながる事業であり、どうしたって今後社会的な要請はさらに高まるだろうとの認識が数年前からあった。
「さらにいえば改修工事には新築工事とは違った難しさがあります。
その際たるものは、そこに住んでいる、あるいは働いている人たちがいつもどおりに生活する中で作業を進めなければならないこと
となれば安全性はもとより、衆人監視の中で環境への配慮は欠くことのできない要索になるでしょう」。
実際、同社が主力としている集合住宅の改修工事では、工事前にほとんどの場合、入札各社から住民へのプレゼンテーションがあるが、そこではここ数年、「積極的な環境配慮を求める声が年追うごとに大きくなっている」という。
同じ工事をするならばより環境配慮された方を選ぼうという機運が高まっている。
そこで同社では、99年7月から環境対応型の改修工事をスタートさせた。
そもそもから環境配慮の意味合いが強かった専業においてさらに環境対応を進めることにより、単なる改修工事からの脱却を図り、環境に準拠したサービスとしての付加価値を高めることが狙いだ。
改修工事そのものを環境対応型に転換。
環境対応型の改修工事とはいったいどんなものなのか。
その柱は大きく分けて2つ。
1.工事現場での廃棄物の削減、2.工法上の揮発性有機化合物(voe)の削減だ。
まず廃棄物の削減だが、現場からはかなりの量の廃棄物が排出される。
養生ビニールやコンクリートガラなど産業廃棄物だけでも、同社98年度実績で請負金額1000万円当たり7.56立方メートル、4トン車換算で1.26台分。
さらに現場からは産業廃棄物だけでなく、飲料缶や弁当箱なども排出される。
延べ500人の作業員が従事する現場であればその量はばかにならない。
これら廃棄物を削減するためにされているのが分別排出やリターナブル容器の利用だ。
分別は10分別を実施。
それぞれの缶はつぶしてから捨てるほどの徹底ぶり。
「現場の教育が最初は難しいですが、慣れれば割合スムーズに実施されています」という。
また塗料で利用している18リットル缶はリターナブル容器を採用した。
これまで塗料缶は汚れを落とすのに手間暇がかかるため、再利用はおろか、再資源化もほとんどされておらず、使い捨てだった。
そこで塗料メーカーとの協力で内側が汚れないようビニル袋に入れた塗料を缶に収める形のリターナブル容器を開発した。
使い終わった缶は販売店が回収し、メーカーへ納入される仕組みでデポジット制となっている。
国内であまり例を見ないシステムを構築している。
「こうした試みはちょっとした手間もかかり、デポジット制といっても従来よりは若干コストがアップする。
とはいえ、廃棄物処理コストの削減や、ごみひとつ落ちていない整然とした作業環境などプラス面は大きい」。
98年度比で容積にして50%、重量換算で30%削減の99年度目標も達成の見込み。
同社ではこれまで請負金額のうち平均して約1.2%が廃棄物処理コストだったが、これが単純計算でも半分になるわけだから、わずかではあるが一方、voeの削減は、塗料やウレタン防水などで水性化を実施している。
欧米ではvoeの使用量規制が法制化されている国もあるが、日本ではさまざまな団体から出されている指針・勧告の類は多いものの規制はされていない。
だが、いずれ日本でも規制物質のひとつになるのは確実と見られている。
「規制うんぬんは別にしても、水性塗料は種類、数ともに出揃ってきましたし、価格、性能とも有機溶剤系塗料と遜色ないレベル。
ならばよりベターな方を使わない手はないと思います」。
従来型の改修に環境配慮というサービスを付加することで、他社との差別化を図る。
同社の持つ技術では、アスベスト除去も欠かせない。
学校や工場、倉庫などの天井や壁に耐火被覆、防音材として使われている吹付アスベストの除去で、同社の98年度実績は75立方メートル。
同社では99年10月にホームページを開設したが、中でもアスベスト除去工事に関する問い合わせは後を絶たないという。
最近ではISO14001取得を予定する工場からのアスベスト除去工事の依頼も増えており、今後も増加が予想される。
併せて、これまでの吹付アスベストだけでなく、スレート板、ボード類などアスベスト製品除去への対応も増加傾向にある。
今後、同社が目指しているのは総合環境配慮型改修工事。
これは改修工事と同時に、分散型クリーンエネルギー、屋上緑化、中水道、省エネ窓ガラスへの断熱フィルム施工など、環境側面の機能を高めようというもの。
さまざまな技術など各社と連携し、ぜひ実現させたいことだ。
小里社長は意気軒昂。
「長寿命化はもちろん、もっと多様な環境配慮の顧客ニーズがこれからは生まれるはず。
いずれにしても環境に配慮した新しい改修工事のあり方を拓いていきたいですね」という小里社長の言葉の奥には、長寿命化、環境配慮の改修工事の視点から新築施工に対しての提案もある。
2000年内にはISO14001認証取得予定。

207-Biomass Power Generation Initiative in Hita City, Oita Prefecture-short-2011-12-Environmental News In Hita City, Oita Prefecture, biomass power generation utilizing methane gas generated at a sewage treatment facility has been operational since April 2012. This facility, installed at the city's purification center, has an output of 95 kilowatts and an annual power generation capacity of 810,000 kilowatt-hours, covering approximately 27% of the center's electricity demand. Hita City's initiative represents the first introduction of biomass power generation in the prefecture and is drawing attention as a model case aiming to conserve the environment and revitalize the local economy by utilizing regional resources.

207-Biomass Power Generation Initiative in Hita City, Oita Prefecture-short-2011-12-Environmental News In Hita City, Oita Prefecture, biomass power generation utilizing methane gas generated at a sewage treatment facility has been operational since April 2012. This facility, installed at the city's purification center, has an output of 95 kilowatts and an annual power generation capacity of 810,000 kilowatt-hours, covering approximately 27% of the center's electricity demand. Hita City's initiative represents the first introduction of biomass power generation in the prefecture and is drawing attention as a model case aiming to conserve the environment and revitalize the local economy by utilizing regional resources.

207-大分県日田市におけるバイオマス発電の取り組み-short-2011-12-環境ニュース

207-大分県日田市におけるバイオマス発電の取り組み-short-2011-12-環境ニュース

大分県日田市では、下水処理施設で発生するメタンガスを利用したバイオマス発電が2012年4月から稼働しています。この設備は市内浄化センターに設置され、出力95キロワット、年間発電量は81万キロワット時で、同センターの電力需要の約27%を賄います。日田市のこの取り組みは、県内初のバイオマス発電導入事例であり、地域資源を活用した環境保全と地域経済の活性化を目指すモデルケースとして注目されています。

Russia's Ocean Dumping of Radioactive Waste - October 1996 Since the Soviet era, Russia has dumped approximately 17,000 containers of radioactive waste into the Barents Sea and Kara Sea, with a total radioactivity exceeding 2.5 million curies (Ci). This includes waste from the decommissioning of the nuclear submarine K-27 and from nuclear fuel reprocessing facilities, raising concerns about long-term impacts on the ecosystem. Although the London Convention of 1993 banned the ocean dumping of radioactive waste, by 1994, an additional 11 reactors had been dumped at sea, some containing spent nuclear fuel.

Russia's Ocean Dumping of Radioactive Waste - October 1996 Since the Soviet era, Russia has dumped approximately 17,000 containers of radioactive waste into the Barents Sea and Kara Sea, with a total radioactivity exceeding 2.5 million curies (Ci). This includes waste from the decommissioning of the nuclear submarine K-27 and from nuclear fuel reprocessing facilities, raising concerns about long-term impacts on the ecosystem. Although the London Convention of 1993 banned the ocean dumping of radioactive waste, by 1994, an additional 11 reactors had been dumped at sea, some containing spent nuclear fuel.

The Russian government announced plans to establish onshore processing facilities with an annual budget of 100 million rubles (approximately 200 million yen), but progress was delayed due to the economic crisis. The European Bank for Reconstruction and Development (EBRD) and the Norwegian government launched the Arctic Radioactive Waste Removal Project, providing international support. This issue poses a significant challenge for environmental protection across the entire Arctic region, with serious implications for fishery resources and marine ecosystems.

ロシアによる放射性廃棄物の海洋投棄 - 1996年10月

ロシアによる放射性廃棄物の海洋投棄 - 1996年10月

ロシアは旧ソ連時代から、バレンツ海やカラ海に約17000個の放射性廃棄物コンテナを投棄し、その総放射能量は2.5百万キュリー(Ci)を超えます。これには、原子力潜水艦「K-27」の廃炉や核燃料再処理施設からの廃棄物も含まれ、生態系への長期的影響が懸念されています。1993年のロンドン条約で放射性廃棄物の海洋投棄は禁止されましたが、1994年までにさらに11基の原子炉が海に捨てられ、一部には使用済み核燃料が残されていました。

ロシア政府は、年間1億ルーブル(約2億円)の予算で陸上処理施設を整備すると発表しましたが、経済危機の影響で進展は遅れました。欧州復興開発銀行(EBRD)やノルウェー政府は「北極圏放射性廃棄物除去計画」を開始し、国際的な支援を行っています。この問題は、漁業資源や海洋生態系に深刻な影響を及ぼし、北極圏全体の環境保護において大きな課題となっています。

Saturday, January 31, 2026

The History of Illegal Dumping of Medical Waste (Japan) - October 1994 #### 1990s In the early 1990s, Japan faced inadequate management of medical waste, particularly contaminated medical materials with blood, needles, and bodily fluids, which were illegally dumped. Notable cases were reported in areas like the **Tama region of Tokyo** and **mountainous areas in Osaka Prefecture**, where medical waste was discarded in mountains and rivers, raising concerns about environmental pollution and public health. By the mid-1990s, over **100 cases of illegal dumping** were confirmed annually across Japan, driven by unscrupulous companies attempting to avoid the high cost of proper medical waste disposal.

The History of Illegal Dumping of Medical Waste (Japan) - October 1994 #### 1990s In the early 1990s, Japan faced inadequate management of medical waste, particularly contaminated medical materials with blood, needles, and bodily fluids, which were illegally dumped. Notable cases were reported in areas like the **Tama region of Tokyo** and **mountainous areas in Osaka Prefecture**, where medical waste was discarded in mountains and rivers, raising concerns about environmental pollution and public health. By the mid-1990s, over **100 cases of illegal dumping** were confirmed annually across Japan, driven by unscrupulous companies attempting to avoid the high cost of proper medical waste disposal.

In response, the Ministry of Health and Welfare issued the **Infectious Waste Management Guidelines** in 1989, instructing medical institutions to properly dispose of infectious waste. These guidelines recommended **incineration** and **high-temperature disinfection** for waste treatment, while increasing oversight of waste disposal companies. However, illegal activities continued, with some companies still engaging in improper waste disposal practices. In the late 1990s, **Osaka Prefecture (Sakai City)** and **Yokosuka City in Kanagawa Prefecture** saw large quantities of medical waste illegally buried by disposal companies, creating significant social issues.

#### 2000s In the 2000s, the management of medical waste saw significant advancements. Notably, a **barcode tracking system** was introduced, allowing the tracking of medical waste from its generation to its final disposal. This system was first implemented in major metropolitan areas like **Tokyo** and **Kanagawa Prefecture**, where the entire waste treatment process was thoroughly monitored. As a result, reports indicated that by **2005**, incidents of illegal dumping had decreased by **approximately 60%**. On the technical side, **Nippon Steel & Sumitomo Metal** (now Nippon Steel) developed a medical waste treatment technology that gained significant attention. This technique used the high-temperature furnaces at steel mills to **melt medical waste at over 1200 degrees Celsius**, fully neutralizing it. This method was adopted at large medical waste treatment facilities in **Kitakyushu City** and **Kawasaki City**, enabling efficient and safe waste treatment. This technolog
ical innovation significantly reduced the cost of medical waste disposal, promoting more widespread and appropriate waste management practices.

#### 2010s By the 2010s, environmental awareness had grown, and both medical waste management technology and legal frameworks were further strengthened. In particular, the **2011 Great East Japan Earthquake** brought renewed focus to the proper handling of medical waste during disasters. In affected areas, managing medical waste became a significant challenge, with a shortage of temporary waste treatment facilities. **Fukushima Prefecture** and **Miyagi Prefecture** established temporary storage facilities for medical waste, creating systems for swift recycling and neutralization. Technologically, significant progress was made. For example, **waste incineration technology using renewable energy** gained prominence, and waste treatment facilities in **Yokohama** and **Nagoya** adopted solar-powered incinerators. This technology significantly reduced emissions of **PM2.5** and **dioxins**, achieving reductions of **over 70%**. These facilities also applied the technology to gen
eral waste management, serving as model cases for reducing environmental impact in entire regions. #### 2020s
In the 2020s, the COVID-19 pandemic brought renewed attention to medical waste. Large amounts of infectious waste, including **disposable masks**, **protective clothing**, and **gloves**, were generated, creating new challenges for waste management. In major metropolitan areas like **Tokyo** and **Osaka**, tens of tons of medical waste were produced daily, pushing the limits of disposal capacity.

To address this issue, AI technology and **drones** were introduced to monitor waste management. **Kobe** and **Sapporo** implemented drone surveillance, reducing the risk of illegal dumping. Additionally, recycling technology for disposable masks and protective clothing was developed. In **Kobe**, experimental plants were set up to recycle such waste, with future improvements in recycling rates anticipated.

While technological advancements and strengthened regulations have led to improvements in medical waste management by the 2020s, the management of waste during infectious disease outbreaks like COVID-19 remains a challenge, requiring further technological development and regulatory measures.

The History of Illegal Dumping of Medical Waste (Japan) - October 1994

The History of Illegal Dumping of Medical Waste (Japan) - October 1994

#### 1990s
In the early 1990s, Japan faced inadequate management of medical waste, particularly contaminated medical materials with blood, needles, and bodily fluids, which were illegally dumped. Notable cases were reported in areas like the **Tama region of Tokyo** and **mountainous areas in Osaka Prefecture**, where medical waste was discarded in mountains and rivers, raising concerns about environmental pollution and public health. By the mid-1990s, over **100 cases of illegal dumping** were confirmed annually across Japan, driven by unscrupulous companies attempting to avoid the high cost of proper medical waste disposal.

In response, the Ministry of Health and Welfare issued the **Infectious Waste Management Guidelines** in 1989, instructing medical institutions to properly dispose of infectious waste. These guidelines recommended **incineration** and **high-temperature disinfection** for waste treatment, while increasing oversight of waste disposal companies. However, illegal activities continued, with some companies still engaging in improper waste disposal practices. In the late 1990s, **Osaka Prefecture (Sakai City)** and **Yokosuka City in Kanagawa Prefecture** saw large quantities of medical waste illegally buried by disposal companies, creating significant social issues.

#### 2000s
In the 2000s, the management of medical waste saw significant advancements. Notably, a **barcode tracking system** was introduced, allowing the tracking of medical waste from its generation to its final disposal. This system was first implemented in major metropolitan areas like **Tokyo** and **Kanagawa Prefecture**, where the entire waste treatment process was thoroughly monitored. As a result, reports indicated that by **2005**, incidents of illegal dumping had decreased by **approximately 60%**.

On the technical side, **Nippon Steel & Sumitomo Metal** (now Nippon Steel) developed a medical waste treatment technology that gained significant attention. This technique used the high-temperature furnaces at steel mills to **melt medical waste at over 1200 degrees Celsius**, fully neutralizing it. This method was adopted at large medical waste treatment facilities in **Kitakyushu City** and **Kawasaki City**, enabling efficient and safe waste treatment. This technological innovation significantly reduced the cost of medical waste disposal, promoting more widespread and appropriate waste management practices.

#### 2010s
By the 2010s, environmental awareness had grown, and both medical waste management technology and legal frameworks were further strengthened. In particular, the **2011 Great East Japan Earthquake** brought renewed focus to the proper handling of medical waste during disasters. In affected areas, managing medical waste became a significant challenge, with a shortage of temporary waste treatment facilities. **Fukushima Prefecture** and **Miyagi Prefecture** established temporary storage facilities for medical waste, creating systems for swift recycling and neutralization.

Technologically, significant progress was made. For example, **waste incineration technology using renewable energy** gained prominence, and waste treatment facilities in **Yokohama** and **Nagoya** adopted solar-powered incinerators. This technology significantly reduced emissions of **PM2.5** and **dioxins**, achieving reductions of **over 70%**. These facilities also applied the technology to general waste management, serving as model cases for reducing environmental impact in entire regions.

#### 2020s
In the 2020s, the COVID-19 pandemic brought renewed attention to medical waste. Large amounts of infectious waste, including **disposable masks**, **protective clothing**, and **gloves**, were generated, creating new challenges for waste management. In major metropolitan areas like **Tokyo** and **Osaka**, tens of tons of medical waste were produced daily, pushing the limits of disposal capacity.

To address this issue, AI technology and **drones** were introduced to monitor waste management. **Kobe** and **Sapporo** implemented drone surveillance, reducing the risk of illegal dumping. Additionally, recycling technology for disposable masks and protective clothing was developed. In **Kobe**, experimental plants were set up to recycle such waste, with future improvements in recycling rates anticipated.

While technological advancements and strengthened regulations have led to improvements in medical waste management by the 2020s, the management of waste during infectious disease outbreaks like COVID-19 remains a challenge, requiring further technological development and regulatory measures.

=?UTF-8?B?SGlzdG9yeSBhbmQgQ3VycmVudCBTdGF0dXMgb2YgRVUgSGF6YXJkb3VzIFdhc3RlIEV4cG9ydCBSZWd1bGF0aW9ucyBJbiAxOTk1LCB0aGUgRVUgYmFubmVkIHRoZSBleHBvcnQgb2YgaGF6YXJkb3VzIHdhc3RlLCBzdHJlbmd0aGVuaW5nIG1lYXN1cmVzIGFnYWluc3QgZW52aXJvbm1lbnRhbCBwb2xsdXRpb24gY2F1c2VkIGJ5IGltcHJvcGVyIGRpc3Bvc2FsLCBwYXJ0aWN1bGFybHkgaW4gQWZyaWNhbiBhbmQgQXNpYW4gY291bnRyaWVzLiBEdXJpbmcgdGhlIDIwMDBzLCBpdCBhaW1lZCB0byBpbmNyZWFzZSByZWN5Y2xpbmcgcmF0ZXMgdGhyb3VnaCB0aGUgV2FzdGUgU2hpcG1lbnQgUmVndWxhdGlvbiBhbmQgdGhlIFdFRUUgRGlyZWN0aXZlLiBJbiB0aGUgMjAxMHMsIGl0IHByb21vdGVkIHRoZSB0cmFuc2l0aW9uIHRvIGEgY2lyY3VsYXIgZWNvbm9teSwgc2V0dGluZyBhIHRhcmdldCB0byBzaWduaWZpY2FudGx5IHJhaXNlIHdhc3RlIHJlY3ljbGluZyByYXRlcyBieSAyMDMwLiBJbiAyMDE4LCBDaGluYSdzIGJhbiBvbiB3YXN0ZSBpbXBvcnRzIHByb21wdGVkIGEgc2hpZnQgaW4gZXhwb3J0IGRlc3RpbmF0aW9ucyB0byBTb3V0aGVhc3QgQXNpYSwgYnV0IHRoZXNlIGNvdW50cmllcyBhbHNvIHRpZ2h0ZW5lZCB0aGVpciByZWd1bGF0aW9ucy4gVGhlIDIwMjBzIHNhdyB0aGUgRVUgYmFuIHBsYXN0aWMgd2FzdGUgZXhwb3J0cyBhbmQgYWR2YW5jZSB0aGUgcmVjeWNsaW5nIG9 mIHJhcmUgZWFydGggZWxlbWVudHMuIFdoaWxlIGNvbnRpbnVpbmcgdG8gc3RyZW5ndGhlbiByZWd1bGF0aW9ucywgdGhlIEVVIGZhY2VzIHRoZSBjaGFsbGVuZ2VzIG9mIHJlYWxpemluZyBhIGNpcmN1bGFyIGVjb25vbXkgYW5kIGVuaGFuY2luZyBjb29wZXJhdGlvbiBhbW9uZyBtZW1iZXIgc3RhdGVzLiA=?=

History and Current Status of EU Hazardous Waste Export Regulations In 1995, the EU banned the export of hazardous waste, strengthening measures against environmental pollution caused by improper disposal, particularly in African and Asian countries. During the 2000s, it aimed to increase recycling rates through the Waste Shipment Regulation and the WEEE Directive. In the 2010s, it promoted the transition to a circular economy, setting a target to significantly raise waste recycling rates by 2030. In 2018, China's ban on waste imports prompted a shift in export destinations to Southeast Asia, but these countries also tightened their regulations. The 2020s saw the EU ban plastic waste exports and advance the recycling of rare earth elements. While continuing to strengthen regulations, the EU faces the challenges of realizing a circular economy and enhancing cooperation among member states.

EU有害廃棄物輸出規制の歴史と現状

EU有害廃棄物輸出規制の歴史と現状
1995年、EUは有害廃棄物の輸出を禁止し、特にアフリカやアジア諸国での不適切な処理による環境汚染対策を強化しました。2000年代には廃棄物輸送規則やWEEE指令を通じてリサイクル率向上を目指し、2010年代には循環型経済への移行を推進。2030年までに廃棄物リサイクル率を大幅に引き上げる目標を設定しました。2018年、中国の廃棄物輸入禁止政策を契機に輸出先が東南アジアに移行しましたが、これらの国々も規制を強化。2020年代にはプラスチック廃棄物輸出を禁止し、希土類元素のリサイクル推進を進めています。EUは規制の強化を続けつつ、循環型経済の実現と加盟国間の協力強化が課題となっています。

=?UTF-8?B?S2FzaGl3YXpha2ktS2FyaXdhIE51Y2xlYXIgUG93ZXIgUGxhbnQgUmVzdGFydCBQbGFuIGFuZCBSZWdpb25hbCBDaGFsbGVuZ2VzIC0gMjAwMSB0byAyMDIzIFRoZSBLYXNoaXdhemFraS1LYXJpd2EgTnVjbGVhciBQb3dlciBQbGFudCwgbG9jYXRlZCBpbiBLYXJpd2EgVmlsbGFnZSBhbmQgS2FzaGl3YXpha2kgQ2l0eSwgTmlpZ2F0YSBQcmVmZWN0dXJlLCBzYXcgZXhwYW5zaW9uIHBsYW5zIGRlYmF0ZWQgaW4gMjAwMSwgYnV0IGNvbmNlcm5zIHdlcmUgcmFpc2VkIGFib3V0IGVhcnRocXVha2Ugcmlza3MgYW5kIHJhZGlvYWN0aXZlIHdhc3RlIG1hbmFnZW1lbnQuIEZvbGxvd2luZyB0aGUgMjAxMSBGdWt1c2hpbWEgRGFpaWNoaSBudWNsZWFyIGFjY2lkZW50LCBhbGwgcmVhY3RvcnMgd2VyZSBzaHV0IGRvd24uIEluIDIwMjMsIHRoZSBiYW4gb24gbW92aW5nIG51Y2xlYXIgZnVlbCB3YXMgbGlmdGVkIGR1ZSB0byBwcm9ncmVzcyBpbiBzYWZldHkgbWVhc3VyZXMuIEhvd2V2ZXIsIGxvY2FsIHJlc2lkZW50cyByZW1haW4gY29uY2VybmVkIGFib3V0IGV2YWN1YXRpb24gcGxhbnMgYW5kIHRoZSByZWxpYWJpbGl0eSBvZiBUb2t5byBFbGVjdHJpYyBQb3dlciBDb21wYW55IChURVBDTykuIE9uIHRoZSBvdGhlciBoYW5kLCByZXN0YXJ0aW5nIHRoZSBwbGFudCBpcyBleHBlY3RlZCB0byByZWR1Y2UgZnVlbCBjb3N0cyBieSBvdmVyIDEwMCBiaWxsaW9uIHllbiBhbm51YWxseS4gVGh lIGNvbmZsaWN0IGJldHdlZW4gZWNvbm9taWMgYmVuZWZpdHMgYW5kIGVuc3VyaW5nIHNhZmV0eSBjb250aW51ZXMuIA==?=

Kashiwazaki-Kariwa Nuclear Power Plant Restart Plan and Regional Challenges - 2001 to 2023 The Kashiwazaki-Kariwa Nuclear Power Plant, located in Kariwa Village and Kashiwazaki City, Niigata Prefecture, saw expansion plans debated in 2001, but concerns were raised about earthquake risks and radioactive waste management. Following the 2011 Fukushima Daiichi nuclear accident, all reactors were shut down. In 2023, the ban on moving nuclear fuel was lifted due to progress in safety measures. However, local residents remain concerned about evacuation plans and the reliability of Tokyo Electric Power Company (TEPCO). On the other hand, restarting the plant is expected to reduce fuel costs by over 100 billion yen annually. The conflict between economic benefits and ensuring safety continues.

柏崎刈羽原発再稼働計画と地域の課題 - 2001年から2023年

柏崎刈羽原発再稼働計画と地域の課題 - 2001年から2023年

新潟県刈羽村と柏崎市に位置する柏崎刈羽原発は、2001年に増設計画が議論されましたが、震災リスクや放射性廃棄物管理の課題が指摘されました。2011年の福島第一原発事故以降、全基が停止。2023年には安全対策の進展により核燃料移動禁止命令が解除されましたが、地元住民は避難計画や東京電力の信頼性に不安を抱えています。一方、再稼働で年間1000億円以上の燃料費削減が見込まれています。経済的利益と安全性確保を巡る葛藤が続いています。

Friday, January 30, 2026

Japan's construction industry is shifting from a scrap-and-build approach to one focused on regeneration, aligning with Western practices. It is entering a transition period from tearing down old buildings for new construction or replacement to a market emphasizing renovation and repair to extend building lifespans.

Japan's construction industry is shifting from a scrap-and-build approach to one focused on regeneration, aligning with Western practices. It is entering a transition period from tearing down old buildings for new construction or replacement to a market emphasizing renovation and repair to extend building lifespans.
Understanding of the long-term use of existing buildings is gradually permeating society as a whole, from single-family homes and apartment buildings over 40 years old to public structures. Regarding apartment buildings, the number requiring renovation and repair now reaches 40,000 units. Furthermore, much of the social infrastructure built intensively during the high-growth period—bridges, dams, ports, etc.—is aging. The sharp increase in renewal and maintenance costs signals that the time has come for a fundamental review of public works.
The draft 2012 Ministry of Land, Infrastructure, Transport and Tourism White Paper states that combined national and local public works spending in 2010 was 8.3 trillion yen. Even now, renewal costs (0.9 trillion yen) and maintenance costs (3.3 trillion yen) account for 50% of this total.
If all social infrastructure exceeding its service life were uniformly replaced with identical functionality, costs would increase by 4.4 trillion yen by fiscal year 2025. Combined with maintenance and disaster recovery costs, the total would exceed 8.3 trillion yen. As replacement costs continue to rise, keeping public works spending at 1 trillion yen would mean required replacement costs over the next 60 years (through fiscal year 2075) would reach approximately 70 trillion yen, making funding these replacements virtually impossible.
The Ministry of Land, Infrastructure, Transport and Tourism (MLIT) proposes a countermeasure: increasing inspection frequency and implementing aging countermeasures focused on repairs and maintenance. While this would increase maintenance costs, it would significantly limit the fiscal burden. For example, Japan has 150,000 road bridges nationwide. A sharp increase in aging bridges would incur enormous replacement costs.
The "Longevity Maintenance Plan" promoted by the ministry to local governments is shifting away from conventional repairs and replacements toward planned maintenance and preservation for extended service life. Amid these changes, the construction industry's transformation is drawing attention as it seeks new business opportunities.

日本の建設業界も欧米並みにスクラップ&ビルドから再生重視の時代へ。

日本の建設業界も欧米並みにスクラップ&ビルドから再生重視の時代へ。
古くなった建物を壊して立て替える新築・更新から、改修・補修を加えて長寿化を図る市場への転換期を迎えている。
築40年以上の戸建て・集合住宅から公共建築物まで、社会全体にストック建築物の長期利用に対する理解がじわり浸透してきている。
集合住宅についていえば、これから改修・補修を必要とする棟数は四万に及び、特に高度成長期に集中的に整備された橋、ダム、港湾など社会インフラの多くが老朽化し、更新・維持費の急増は公共事業の抜本的な見直しの時期が来ている。
12年度の国土交通省白書原案には、10年度の国と地方を合わせた公共事業費は8.3兆円。現状でも更新費 (0.9兆円)と維持管理費(3.3兆円)で50%を占める。
これから耐用年数を超える社会インフラを、同じ機能で一律に更新した場合、37年度には費用が4.4兆円増。維持管理費や災害復旧費と合わせた額は8.3兆円を上回るとされ、その後も更新費は増えるため、公共事業費を1兆円に据え置くと印年度までの60年間で、必要な更新費は約70兆円となり、更新費の捻出はまず不可能。
国交省は、その回避策として点検の頻度を上げ、修繕・補修に力点を入れた老朽化対策を導入すれば、維持管理費は増大するものの、財政負担は幅に抑えられるという。例えば全国に15万道路橋があり、老朽橋が急増すれば膨大な額の架け替え費用が発生する。
同省が各自治体に働きかけている「長寿化修繕計画」は、従来型の修理・架け替えでなく、計画的な維持保全を進める長寿命化へと転換している。
こうした変化の中で、新たな商機を得て、建設業の業態変化が注目されるところ。

Biomass Energy Utilization in Växjö, Sweden - December 2002 Växjö, a city in southern Sweden, relied entirely on oil for heating energy until the late 1970s. Today, it generates electricity and provides district heating using biomass energy. This energy transition was advanced as part of sustainable policy, utilizing the forest resources surrounding Växjö.

Biomass Energy Utilization in Växjö, Sweden - December 2002 Växjö, a city in southern Sweden, relied entirely on oil for heating energy until the late 1970s. Today, it generates electricity and provides district heating using biomass energy. This energy transition was advanced as part of sustainable policy, utilizing the forest resources surrounding Växjö.

The City of Växjö's biomass power generation system is operated by "Växjö Energi AB" and uses approximately 200,000 tons of wood waste annually as fuel. This wood primarily consists of thinned timber from local forest management and waste from sawmills. It produces about 600 gigawatt-hours of electricity annually and supplies heat to approximately 90% of the city's buildings. This biomass power generation enables Växjö to reduce carbon dioxide emissions by approximately 250,000 tons annually, advancing its shift away from fossil fuel dependence. Växjö aims to become "the world's most environmentally friendly city," citing this project as a flagship example. Furthermore, the local company "Sveaskog" supports the supply of approximately 200,000 tons of wood annually, promoting sustainable resource management across the entire region. Furthermore, this project has created 150 jobs, revitalizing the local economy. This biomass system reduces energy costs by approximately
25%, generating an economic impact of about 300 million Swedish kronor (approximately 4 billion yen) annually. The adoption of renewable energy is being referenced by cities worldwide as a measure against climate change.

スウェーデン・ベクショー市のバイオマスエネルギー利用-2002年12月

スウェーデン・ベクショー市のバイオマスエネルギー利用-2002年12月

スウェーデン南部のベクショー市は、1970年代末まで暖房エネルギーの100%を石油に依存していましたが、現在ではバイオマスエネルギーを利用した発電と地域熱供給を行っています。このエネルギー転換は、持続可能な政策の一環として進められ、ベクショー市周辺の森林資源が活用されています。

ベクショー市のバイオマス発電システムは「ベクショーエネルギー社」が運営し、年間約20万トンの木材廃棄物を燃料に使用しています。この木材は、地域の森林管理で出る間伐材や製材所からの廃棄物が中心で、年間約600ギガワット時の電力を生産し、市内の建物の約90%に熱を供給しています。このバイオマス発電により、ベクショー市は年間約25万トンの二酸化炭素排出削減を達成し、化石燃料依存からの脱却を進めています。

ベクショー市は「世界で最も環境に優しい都市」を目指し、このプロジェクトを代表的な事例としています。また、地元企業「スヴェアスコーグ」が年間約20万トンの木材供給を支援しており、持続可能な資源管理を地域全体で進めています。加えて、このプロジェクトは150人の雇用を生み、地域経済を活性化させています。

このバイオマスシステムはエネルギーコストを約25%削減し、年間約3億スウェーデンクローナ(約40億円)の経済効果をもたらしています。再生可能エネルギーの導入は、気候変動対策として世界中の都市でも参考にされています。

Thursday, January 29, 2026

=?UTF-8?B?SWxsZWdhbCBEdW1waW5nIG9mIEZSUCBWZXNzZWxzIC0gTmF0aW9ud2lkZSBpbiBKYXBhbiAtIEhpc3RvcnkgYW5kIEN1cnJlbnQgU3RhdHVzIGZyb20gMjAwNCB0byB0aGUgMjAyMHMgRlJQIChGaWJlciBSZWluZm9yY2VkIFBsYXN0aWMpIHBsZWFzdXJlIGJvYXRzIGdhaW5lZCBwb3B1bGFyaXR5IGR1ZSB0byB0aGVpciBkdXJhYmlsaXR5IGFuZCBsaWdodCB3ZWlnaHQsIGJ1dCB0aGVpciBkaXNwb3NhbCBoYXMgYmVjb21lIGEgc2lnbmlmaWNhbnQgaXNzdWUuIEJ5IDIwMDQsIGFwcHJveGltYXRlbHkgNSwwMDAgYm9hdHMgd2VyZSBiZWluZyBkaXNjYXJkZWQgYW5udWFsbHksIHdpdGggYWJvdXQgMSwwMDAgaWxsZWdhbGx5IGR1bXBlZCBhbG9uZyBjb2FzdGxpbmVzIGFuZCByaXZlcmJhbmtzLiBUaGlzIGlsbGVnYWwgZHVtcGluZyBjYXVzZWQgc2V2ZXJlIGVudmlyb25tZW50YWwgaW1wYWN0cywgaW5jbHVkaW5nIHRoZSBkZXRlcmlvcmF0aW9uIG9mIG1hcmluZSBlY29zeXN0ZW1zIGFuZCBsYW5kc2NhcGUgZGVzdHJ1Y3Rpb24uIEluIHJlc3BvbnNlLCB0aGUgTWluaXN0cnkgb2YgTGFuZCwgSW5mcmFzdHJ1Y3R1cmUsIFRyYW5zcG9ydCBhbmQgVG91cmlzbSAoTUxJVCkgYmVnYW4gZGVzaWduaW5nIHN5c3RlbXMgdG8gcHJvbW90ZSBGUlAgYm9hdCByZWN5Y2xpbmcuIEVmZm9ydHMgYWR2YW5jZWQgdG8gaW1wcm92ZSBkaXNtYW50bGluZyBhbmQgY3J1c2hpbmcgdGVjaG5vbG9naWV zIGZvciBkaXNjYXJkZWQgYm9hdHMgYW5kIHRvIGVzdGFibGlzaCBkZWRpY2F0ZWQgcmVjeWNsaW5nIGZhY2lsaXRpZXMuIEFkZGl0aW9uYWxseSwgY2FtcGFpZ25zIHRvIHByZXZlbnQgaWxsZWdhbCBkdW1waW5nIHdlcmUgY29uZHVjdGVkIGluIGNvbGxhYm9yYXRpb24gd2l0aCBsb2NhbCBnb3Zlcm5tZW50cywgYW5kIG1lY2hhbmlzbXMgcmVxdWlyaW5nIGJvYXQgb3duZXJzIHRvIGJlYXIgcGFydCBvZiB0aGUgcmVjeWNsaW5nIGNvc3RzIHdlcmUgYWxzbyBjb25zaWRlcmVkLiBIb3dldmVyLCBlbnN1cmluZyB0aGUgcHJvZml0YWJpbGl0eSBvZiByZWN5Y2xpbmcgb3BlcmF0aW9ucyByZW1haW5lZCBhIGNoYWxsZW5nZS4gV2hpbGUgZGV2ZWxvcG1lbnQgb2YgdGVjaG5vbG9naWVzIHRvIHJldXNlIGRpc2NhcmRlZCBGUlAgYXMgYnVpbGRpbmcgbWF0ZXJpYWxzIG9yIGZ1ZWwgcHJvZ3Jlc3NlZCwgd2lkZXNwcmVhZCBpbXBsZW1lbnRhdGlvbiB0b29rIHRpbWUu?=

Illegal Dumping of FRP Vessels - Nationwide in Japan - History and Current Status from 2004 to the 2020s FRP (Fiber Reinforced Plastic) pleasure boats gained popularity due to their durability and light weight, but their disposal has become a significant issue. By 2004, approximately 5,000 boats were being discarded annually, with about 1,000 illegally dumped along coastlines and riverbanks. This illegal dumping caused severe environmental impacts, including the deterioration of marine ecosystems and landscape destruction. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) began designing systems to promote FRP boat recycling. Efforts advanced to improve dismantling and crushing technologies for discarded boats and to establish dedicated recycling facilities. Additionally, campaigns to prevent illegal dumping were conducted in collaboration with local governments, and mechanisms requiring boat owners to bear part of the recycling costs were also c
onsidered. However, ensuring the profitability of recycling operations remained a challenge. While development of technologies to reuse discarded FRP as building materials or fuel progressed, widespread implementation took time.

During the 2010s, efforts to resolve the FRP waste vessel problem intensified. In 2015, the "National FRP Waste Vessel Recycling Promotion Council" was established, advancing industry-wide initiatives. Specifically, shredding technology for used FRP significantly improved, leading to increased cases of its use as recycled material in road paving and construction materials. Furthermore, the government expanded subsidies for vessel disposal to a maximum of 500,000 yen per case and launched model projects in collaboration with local governments. As a result, by 2018, the proper disposal rate for FRP vessels reached 65%. However, approximately 35% (about 1,750 vessels annually) remained untreated or illegally dumped.

Entering the 2020s, with approximately 6,000 vessels scrapped annually, reports indicate around 800 vessels are illegally dumped without proper treatment. In response, the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) established over 10 dedicated dismantling facilities nationwide, creating a system capable of processing over 2,000 scrap vessels annually. Furthermore, companies like Mitsubishi Chemical and Sumitomo Chemical have developed chemical recycling technologies, advancing efforts to reuse waste FRP as building materials and fuel. Additionally, municipalities along the Seto Inland Sea enacted the "Seto Inland Sea Waste Vessel Management Ordinance" in 2020, mandating notification obligations for owners and introducing penalties. This reduced the abandonment of waste vessels by over 10% annually. However, the high average disposal cost of over ¥200,000 per vessel remains a persistent challenge. Internationally, efforts are underway to share waste vesse
l recycling technology with neighboring countries like South Korea and the Philippines. The FRP waste vessel issue is positioned as part of reducing marine plastic pollution and is a critical challenge for protecting the marine environment. While technological innovation and strengthened regulations have brought some improvement, the need for cost reduction and increased owner awareness remains unchanged.

FRP廃船の不法投棄問題 - 日本全国 - 2004年から2020年代の歴史と現状

FRP廃船の不法投棄問題 - 日本全国 - 2004年から2020年代の歴史と現状

FRP(繊維強化プラスチック)製プレジャーボートは、耐久性と軽量性から普及しましたが、その廃棄処理が課題となっています。2004年時点では、年間約5000隻が廃棄され、そのうち約1000隻が沿岸部や河川敷で不法投棄されていました。不法投棄は環境への深刻な影響を及ぼし、海洋生態系の悪化や景観破壊が問題視されました。

これに対し、国土交通省はFRP廃船のリサイクル推進に向けた制度設計を開始。廃船の解体・粉砕技術の向上や専用リサイクル施設の整備が進められました。また、自治体と連携した不法投棄防止キャンペーンが展開され、船舶所有者にリサイクル費用の一部負担を求める仕組みも検討されました。しかし、リサイクル事業の採算性確保が課題であり、廃FRPの建材や燃料としての再利用技術の開発が進む一方、広範な導入には時間を要しました。

2010年代には、FRP廃船問題の解決に向けた動きがさらに活発化しました。2015年には「全国FRP廃船リサイクル推進協議会」が設立され、業界全体での取り組みが進みました。具体的には、使用済みFRPの粉砕技術が大幅に改善され、リサイクル材として道路舗装や建設資材に利用される事例が増加しました。また、政府は廃船処理の補助金を1件あたり最大50万円に拡充し、自治体と連携したモデルプロジェクトを展開。その結果、2018年時点でFRP廃船の適切処理率は65%に達しましたが、依然として約35%(年間約1750隻)が未処理または不法投棄されている状況でした。

2020年代に入ると、年間約6000隻が廃棄される中、約800隻が適切に処理されないまま不法投棄されているとの報告があります。これを受けて、国土交通省は全国で10カ所以上の専用解体施設を新設し、年間2000隻以上の廃船を処理可能な体制を整備しました。さらに、三菱ケミカルや住友化学などの企業が化学リサイクル技術を開発し、廃FRPを建材や燃料として再利用する取り組みが進められています。

また、瀬戸内海沿岸の自治体では、2020年に「瀬戸内海廃船管理条例」を施行し、所有者への通知義務化やペナルティの導入を実施。これにより、廃船の放置が年間10%以上減少しました。一方で、処理コストが平均1隻あたり20万円以上かかる点が引き続き課題です。

国際的にも、韓国やフィリピンなどの近隣諸国と廃船リサイクル技術の共有が進められています。FRP廃船問題は、海洋プラスチック削減の一環として位置づけられ、海洋環境保護のための重要な課題となっています。技術革新や制度強化により一定の改善が見られるものの、コスト削減や所有者意識の向上が求められる状況は変わりません。

=?UTF-8?B?IyMjIE1vZGVsIFByb2plY3QgZm9yIEltcHJvdmluZyBXYXRlciBFbnZpcm9ubWVudHMgaW4gRW5jbG9zZWQgU2VhcyAtIEFwcmlsIDIwMDcgdG8gMjAyMHMgQSBtb2RlbCBwcm9qZWN0IHRvIGltcHJvdmUgd2F0ZXIgZW52aXJvbm1lbnRzIGluIGVuY2xvc2VkIHNlYXMgY29tbWVuY2VkIGluIDIwMDcsIHRhcmdldGluZyB0aGUgU2VuZGFpIEJheSwgT3Nha2EgQmF5LCBhbmQgSGFyaW1hbmFkYSBhcmVhcyBpbiBNaXlhZ2ksIE9zYWthLCBhbmQgSHlvZ28gUHJlZmVjdHVyZXMuIEl0IGludHJvZHVjZWQgdGVjaG5vbG9naWVzIHRvIHJlZHVjZSBhcXVhY3VsdHVyZSB3YXN0ZXdhdGVyIGFuZCBzdXBwcmVzcyBuaXRyb2dlbiBhbmQgcGhvc3Bob3J1cyBlbWlzc2lvbnMsIGltcHJvdmluZyBjb2FzdGFsIG94eWdlbiBkZWZpY2llbmN5LiBCeSB0aGUgMjAxMHMsIHRoZSBzY29wZSBvZiB0ZWNobm9sb2d5IGFwcGxpY2F0aW9uIGV4cGFuZGVkOiBTZW5kYWkgQmF5IGFjaGlldmVkIGEgMTUlIHJlZHVjdGlvbiBpbiBuaXRyb2dlbiBlbWlzc2lvbnM7IE9zYWthIEJheSBzYXcgYmlvZGl2ZXJzaXR5IGluY3JlYXNlIGJ5IG92ZXIgMjAlIGR1ZSB0byBleHBhbmRlZCBzZWFncmFzcyBiZWRzOyBhbmQgSGFyaW1hbmFkYSBCYXkgcHJvZ3Jlc3NlZCB3aXRoIGltcHJvdmVkIHdhdGVyIHRyYW5zcGFyZW5jeSBhbmQgcmV2aXRhbGl6ZWQgdG91cmlzbS4gQnkgdGhlIDIwMjBzLCBNaXlhZ2kgUHJlZmV jdHVyZSByZWR1Y2VkIG5pdHJvZ2VuIGFuZCBwaG9zcGhvcnVzIGVtaXNzaW9ucyBieSAyNSUsIE9zYWthIFByZWZlY3R1cmUgc2F3IGEgMTAlIGluY3JlYXNlIGluIGJheSBmaXNoZXJpZXMgY2F0Y2gsIGFuZCBIeW9nbyBQcmVmZWN0dXJlIGV4cGFuZGVkIGl0cyB2ZWdldGF0ZWQgem9uZXMgdG8gMzAwIGhlY3RhcmVzLiBUaGVzZSBwcm9qZWN0cyBhcmUgZ2FpbmluZyBhdHRlbnRpb24gYXMgaW5pdGlhdGl2ZXMgdGhhdCBzdWNjZXNzZnVsbHkgYmFsYW5jZSByZWdpb25hbCBlY29ub21pYyByZXZpdGFsaXphdGlvbiB3aXRoIGVudmlyb25tZW50YWwgY29uc2VydmF0aW9uLiA=?=

### Model Project for Improving Water Environments in Enclosed Seas - April 2007 to 2020s A model project to improve water environments in enclosed seas commenced in 2007, targeting the Sendai Bay, Osaka Bay, and Harimanada areas in Miyagi, Osaka, and Hyogo Prefectures. It introduced technologies to reduce aquaculture wastewater and suppress nitrogen and phosphorus emissions, improving coastal oxygen deficiency. By the 2010s, the scope of technology application expanded: Sendai Bay achieved a 15% reduction in nitrogen emissions; Osaka Bay saw biodiversity increase by over 20% due to expanded seagrass beds; and Harimanada Bay progressed with improved water transparency and revitalized tourism. By the 2020s, Miyagi Prefecture reduced nitrogen and phosphorus emissions by 25%, Osaka Prefecture saw a 10% increase in bay fisheries catch, and Hyogo Prefecture expanded its vegetated zones to 300 hectares. These projects are gaining attention as initiatives that successfully balance r
egional economic revitalization with environmental conservation.

### 閉鎖性海域の水環境改善モデル事業 - 2007年4月~2020年代

### 閉鎖性海域の水環境改善モデル事業 - 2007年4月~2020年代

宮城県、大阪府、兵庫県の仙台湾、大阪湾、播磨灘を対象に、2007年に閉鎖性海域の水環境改善モデル事業が開始されました。養殖業廃水削減や窒素・リン排出抑制技術を導入し、沿岸部の酸素不足を改善。2010年代には技術の適用範囲が広がり、仙台湾で窒素排出量が15%削減、大阪湾では藻場の拡大により生物多様性が20%以上向上。播磨灘では水質透明度の改善と観光業の活性化が進みました。2020年代には、宮城県が窒素・リン排出量を25%削減、大阪府で湾内漁獲量が10%増加、兵庫県で植生帯が300ヘクタールに拡大。地域経済の活性化と環境保全を両立する事業として注目されています。

=?UTF-8?B?Q2hhbGxlbmdlcyBpbiBKYXBhbidzIEZvb2QgU2VsZi1TdWZmaWNpZW5jeSBSYXRlIEluIGZpc2NhbCB5ZWFyIDIwMjMsIEphcGFuJ3MgZm9vZCBzZWxmLXN1ZmZpY2llbmN5IHJhdGUgc3Rvb2QgYXQgMzglIG9uIGEgY2Fsb3JpZSBiYXNpcyBhbmQgNjclIG9uIGEgcHJvZHVjdGlvbiB2YWx1ZSBiYXNpcywgdGhlIGxvd2VzdCBhbW9uZyBPRUNEIG1lbWJlciBjb3VudHJpZXMuIFRoZSBuYXRpb24ncyBkZXBlbmRlbmNlIG9uIGltcG9ydHMgaXMgcHJvbm91bmNlZCwgd2l0aCBsaXZlc3RvY2sgZmVlZCBzZWxmLXN1ZmZpY2llbmN5IGF0IDI1JSBhbmQgd2hlYXQgYXQganVzdCAxMyUsIGxlYXZpbmcgaXQgdnVsbmVyYWJsZSB0byByaXNrcyBpbiB0aGUgaW50ZXJuYXRpb25hbCBtYXJrZXQuIFJlZ2lvbmFsbHksIEhva2thaWRvICgxOTklKSBhbmQgQWtpdGEgUHJlZmVjdHVyZSAoMTM5JSkgaGF2ZSBoaWdoIHJhdGVzLCB3aGlsZSBUb2t5byAoMSUpIGFuZCBPc2FrYSAoMiUpIGFyZSBleHRyZW1lbHkgbG93LiBUaGUgbG9zcyBvZiBsb2NhbCBwcm9kdWN0aW9uIGFuZCBjb25zdW1wdGlvbiBjdWx0dXJlLCBjb3VwbGVkIHdpdGggZGVjbGluaW5nIGZhcm1sYW5kIGFuZCBhbiBhZ2luZyBhZ3JpY3VsdHVyYWwgd29ya2ZvcmNlLCBmdXJ0aGVyIGNvbXBvdW5kcyB0aGUgaXNzdWUuIER1cmluZyB0aGUgMjAyMSBsb2dpc3RpY3MgZGlzcnVwdGlvbnMsIHJlZHVjZWQgc3VwcGxpZXMgb2YgaW1 wb3J0ZWQgd2hlYXQgaW1wYWN0ZWQgdGhlIGRvbWVzdGljIG1hcmtldC4gV2hpbGUgdGhlIGdvdmVybm1lbnQgYWltcyB0byByYWlzZSB0aGUgc2VsZi1zdWZmaWNpZW5jeSByYXRlIHRvIDQ1JSBieSAyMDMwLCBhZGRpdGlvbmFsIG1lYXN1cmVzIGFyZSByZXF1aXJlZCwgY29uc2lkZXJpbmcgdGhlIHVuY2VydGFpbnRpZXMgcG9zZWQgYnkgY2xpbWF0ZSBjaGFuZ2UgYW5kIHRoZSBpbnRlcm5hdGlvbmFsIHNpdHVhdGlvbi4g?=

Challenges in Japan's Food Self-Sufficiency Rate In fiscal year 2023, Japan's food self-sufficiency rate stood at 38% on a calorie basis and 67% on a production value basis, the lowest among OECD member countries. The nation's dependence on imports is pronounced, with livestock feed self-sufficiency at 25% and wheat at just 13%, leaving it vulnerable to risks in the international market. Regionally, Hokkaido (199%) and Akita Prefecture (139%) have high rates, while Tokyo (1%) and Osaka (2%) are extremely low. The loss of local production and consumption culture, coupled with declining farmland and an aging agricultural workforce, further compounds the issue. During the 2021 logistics disruptions, reduced supplies of imported wheat impacted the domestic market. While the government aims to raise the self-sufficiency rate to 45% by 2030, additional measures are required, considering the uncertainties posed by climate change and the international situation.

日本の食料自給率の課題

日本の食料自給率の課題

2023年度、日本の食料自給率はカロリーベースで38%、生産額ベースで67%と、OECD加盟国で最低水準です。輸入依存が顕著で、畜産飼料の自給率は25%、小麦は13%にとどまり、国際市場のリスクに直面しています。地域別では北海道(199%)や秋田県(139%)が高い一方、東京(1%)や大阪(2%)は極めて低水準です。地元生産・消費の文化が失われ、農地の減少や農業従事者の高齢化も影響を与えています。2021年の物流混乱では輸入小麦の供給が減少し、国内市場に影響を及ぼしました。政府は2030年までに自給率を45%に引き上げる目標を掲げていますが、気候変動や国際情勢の不確実性を考慮し、さらなる施策が求められています。

Wednesday, January 28, 2026

=?UTF-8?B?RW52aXJvbm1lbnRhbCBJc3N1ZXMgaW4gdGhlIFllbGxvdyBTZWEgLSBDaGluYSBhbmQgU291dGggS29yZWEgLSBTdW1tYXJ5IGZyb20gMjAwNCB0byB0aGUgMjAyMHMgQnkgMjAwNCwgdGhlIFllbGxvdyBTZWEgaGFkIGJlY29tZSBvbmUgb2YgdGhlIHdvcmxkJ3MgbW9zdCBwb2xsdXRlZCBzZWFzIGR1ZSB0byByYXBpZCB1cmJhbml6YXRpb24gYW5kIHBvcHVsYXRpb24gZ3Jvd3RoIGluIENoaW5hIGFuZCBTb3V0aCBLb3JlYS4gVGhlIGluZmx1eCBvZiB3YXN0ZSBhbmQgaW5kdXN0cmlhbCB3YXN0ZXdhdGVyIGxlZCB0byBhIHNldmVyZSBkZWNsaW5lIGluIGZpc2hlcnkgcmVzb3VyY2VzIGFuZCBsb3NzIG9mIGJpb2RpdmVyc2l0eS4gUmlzaW5nIHNlYSB0ZW1wZXJhdHVyZXMgY2F1c2VkIGJ5IHRoZSAiaGVhdCBpc2xhbmQgZWZmZWN0IiBpbXBhY3RlZCB0aGUgZWNvc3lzdGVtLiBEdXJpbmcgdGhlIDIwMTBzLCBhbm51YWwgaW5kdXN0cmlhbCB3YXN0ZXdhdGVyIGRpc2NoYXJnZXMgcmVhY2hlZCA0MDAgbWlsbGlvbiB0b25zLCBleHBhbmRpbmcgY29hc3RhbCBwb2xsdXRpb24uIFByb2dyZXNzIHdhcyBtYWRlIHRocm91Z2ggQ2hpbmEncyBleHBhbnNpb24gb2YgbWFyaW5lIHByb3RlY3RlZCBhcmVhcyBhbmQgU291dGggS29yZWEncyBzdHJlbmd0aGVuZWQgaW5kdXN0cmlhbCB3YXN0ZSBtYW5hZ2VtZW50LCBidXQgdGhlIGVmZmVjdHMgd2VyZSBsaW1pdGVkLiBCeSB0aGUgMjAyMHM sIGFubnVhbCBmaXNoIGNhdGNoZXMgaGFkIGRlY2xpbmVkIHRvIDYgbWlsbGlvbiB0b25zLiBDaGluYSdzICJZYW5ndHplIFJpdmVyIERlbHRhIEVudmlyb25tZW50YWwgUHJvdGVjdGlvbiBQcm9qZWN0IiBhbmQgU291dGggS29yZWEncyAiQ2xlYW4gT2NlYW4gUGxhbiIgYXJlIG5vdyBiZWluZyBpbXBsZW1lbnRlZC4gU29sdXRpb25zIHJlcXVpcmluZyByZWdpb25hbCBhbmQgaW50ZXJuYXRpb25hbCBjb29wZXJhdGlvbiBhcmUgdXJnZW50bHkgbmVlZGVkLiA=?=

Environmental Issues in the Yellow Sea - China and South Korea - Summary from 2004 to the 2020s By 2004, the Yellow Sea had become one of the world's most polluted seas due to rapid urbanization and population growth in China and South Korea. The influx of waste and industrial wastewater led to a severe decline in fishery resources and loss of biodiversity. Rising sea temperatures caused by the "heat island effect" impacted the ecosystem. During the 2010s, annual industrial wastewater discharges reached 400 million tons, expanding coastal pollution. Progress was made through China's expansion of marine protected areas and South Korea's strengthened industrial waste management, but the effects were limited. By the 2020s, annual fish catches had declined to 6 million tons. China's "Yangtze River Delta Environmental Protection Project" and South Korea's "Clean Ocean Plan" are now being implemented. Solutions requiring regional and international cooperation are urgently needed.

黄海の環境問題 - 中国・韓国 - 2004年から2020年代の要約

黄海の環境問題 - 中国・韓国 - 2004年から2020年代の要約

2004年、黄海は中国と韓国の急速な都市化や人口増加により、世界でも有数の汚染海域となりました。廃棄物や工業廃水が流入し、漁業資源の減少や生物多様性の喪失が深刻化。「熱の島現象」による海水温の上昇が生態系に影響を与えました。2010年代には工業廃水が年間4億トン排出され、沿岸部での汚染が拡大。中国の海洋保護区拡大や韓国の産業廃棄物管理強化が進展するも、効果は限定的でした。2020年代には漁獲量が年間600万トンまで減少し、中国の「長江デルタ環境保護プロジェクト」や韓国の「クリーンオーシャン計画」が展開されています。地域と国際協力による解決が求められています。

=?UTF-8?B?SGlzdG9yeSBhbmQgQ3VycmVudCBTdGF0dXMgb2YgTWluaW5nIGluIFdhc3RlIFByb2Nlc3NpbmcgSW4gMTk5NSwgQ2h1Z29rdSBNaW5pbmcgbGF1bmNoZWQgYSByZWN5Y2xpbmcgYnVzaW5lc3MgdG8gY29udmVydCB3YXN0ZSBpbnRvIHJlc291cmNlcywgYmFzZWQgYXQgdGhlIE1vY2hpa29zaGkgTWluZSBpbiBZdWdhc2hpbWEgVG93biwgU2hpenVva2EgUHJlZmVjdHVyZS4gSW4gdGhlIDIwMDBzLCBhcyBhbiB1cmJhbiBtaW5lLCBpdCBlZmZpY2llbnRseSByZWNvdmVyZWQgcmFyZSBtZXRhbHMgbGlrZSBsaXRoaXVtIGFuZCBjb2JhbHQgZnJvbSBlbGVjdHJvbmljIHdhc3RlIChFLXdhc3RlKS4gSW4gdGhlIDIwMTBzLCByZXNwb25kaW5nIHRvIGluY3JlYXNlZCBkZW1hbmQgZHJpdmVuIGJ5IHRoZSBwcm9saWZlcmF0aW9uIG9mIGxpdGhpdW0taW9uIGJhdHRlcmllcywgaXQgZXhwYW5kZWQgcmVjb3Zlcnkgb2YgbGl0aGl1bSBjb21wb3VuZHMgYW5kIG5pY2tlbC4gVGhlIGNvbXBhbnkgYWxzbyBjb250cmlidXRlZCB0byBkZWJyaXMgcHJvY2Vzc2luZyBhZnRlciB0aGUgR3JlYXQgRWFzdCBKYXBhbiBFYXJ0aHF1YWtlIGFuZCBpbXByb3ZlZCByYXJlIG1ldGFsIHNlcGFyYXRpb24gdGVjaG5vbG9naWVzLiBJbiB0aGUgMjAyMHMsIHRocm91Z2ggZWxlY3Ryb25pYyB3YXN0ZSByZWN5Y2xpbmcgaW4gSXp1IENpdHksIFNoaXp1b2thIFByZWZlY3R1cmUsIGl0IHByb2R1Y2VzIGFwcHJ veGltYXRlbHkgMTAwIGtpbG9ncmFtcyBvZiBnb2xkIGFuZCAxNSB0b25zIG9mIHNpbHZlciBtb250aGx5LiBJdCBmdWxmaWxscyBpdHMgcm9sZSBhcyBhIGNvcmUgZWxlbWVudCBpbiBzdXN0YWluYWJsZSByZXNvdXJjZSBjaXJjdWxhdGlvbiwgYWNoaWV2aW5nIGJvdGggcmVkdWNlZCBlbnZpcm9ubWVudGFsIGltcGFjdCBhbmQgcmV2aXRhbGl6YXRpb24gb2YgdGhlIGxvY2FsIGVjb25vbXkuIA==?=

History and Current Status of Mining in Waste Processing In 1995, Chugoku Mining launched a recycling business to convert waste into resources, based at the Mochikoshi Mine in Yugashima Town, Shizuoka Prefecture. In the 2000s, as an urban mine, it efficiently recovered rare metals like lithium and cobalt from electronic waste (E-waste). In the 2010s, responding to increased demand driven by the proliferation of lithium-ion batteries, it expanded recovery of lithium compounds and nickel. The company also contributed to debris processing after the Great East Japan Earthquake and improved rare metal separation technologies. In the 2020s, through electronic waste recycling in Izu City, Shizuoka Prefecture, it produces approximately 100 kilograms of gold and 15 tons of silver monthly. It fulfills its role as a core element in sustainable resource circulation, achieving both reduced environmental impact and revitalization of the local economy.

廃棄物処理における鉱山業の歴史と現状

廃棄物処理における鉱山業の歴史と現状
1995年、静岡県伊豆湯ヶ島町の持越鉱山を拠点に、中外鉱業が廃棄物を資源化するリサイクル事業を開始しました。2000年代には都市鉱山として電子機器廃棄物(E-waste)からリチウムやコバルトなど希少金属を効率的に回収。2010年代には、リチウムイオン電池普及に伴う需要増加に対応し、リチウム化合物やニッケル回収を拡大しました。また、東日本大震災での瓦礫処理や希少金属分離技術の向上にも寄与。2020年代には静岡県伊豆市での電子廃棄物リサイクルを通じて、月産約100キログラムの金や15トンの銀を生産。環境負荷軽減と地域経済活性化を両立させ、持続可能な資源循環の中核としての役割を果たしています。

Tuesday, January 27, 2026

=?UTF-8?B?MS4gSW50cm9kdWN0aW9uIG9mIEluZHVzdHJpYWwgV2FzdGUgTGFuZGZpbGwgVGF4IChIaXJvc2hpbWEgUHJlZmVjdHVyZSkgLSBBcHJpbCAyMDAzIEhpcm9zaGltYSBQcmVmZWN0dXJlIGludHJvZHVjZWQgYSBsYW5kZmlsbCB0YXggaW4gQXByaWwgMjAwMyB0byByZWR1Y2UgaW5kdXN0cmlhbCB3YXN0ZS4gVGF4aW5nIMKlMSwwMDAgcGVyIHRvbiwgdGhlIGZpcnN0IHllYXIncyDCpTcwMCBtaWxsaW9uIGluIHRheCByZXZlbnVlIHdhcyBkZXBvc2l0ZWQgaW50byB0aGUgIkluZHVzdHJpYWwgV2FzdGUgUmVkdWN0aW9uIEZ1bmQsIiBlc3RhYmxpc2hpbmcgYSBzdWJzaWR5IHByb2dyYW0gZm9yIHJlY3ljbGluZyB0ZWNobm9sb2d5IGRldmVsb3BtZW50LiBNZWFzdXJlcyB0byBlbmNvdXJhZ2UgY29ycG9yYXRlIHdhc3RlIHJlZHVjdGlvbiBhbmQgbGVzc2VuIGVudmlyb25tZW50YWwgaW1wYWN0IGFyZSBiZWluZyBhZHZhbmNlZC4gMi4gUmVkdWN0aW9uIG9mIHRoZSBFY28tVG93biBQcm9qZWN0IChLaXRha3l1c2h1IENpdHksIEZ1a3Vva2EgUHJlZmVjdHVyZSkgLSAyMDAzIEtpdGFreXVzaHUgQ2l0eSBoYWQgYmVlbiBpbXBsZW1lbnRpbmcgaXRzIEVjby1Ub3duIFByb2plY3Qgc2luY2UgMTk5NywgaW52ZXN0aW5nIDI4IGJpbGxpb24geWVuIGluIHN1YnNpZGllcyBieSBmaXNjYWwgeWVhciAyMDAxLiBIb3dldmVyLCB0aGUgc3Vic2lkeSB3YXMgcmVkdWNlZCBpbiB0aGUgZmlzY2F sIHllYXIgMjAwMyBidWRnZXQsIGFuZCBhIG5ldyBpbml0aWF0aXZlLCB0aGUgQmlvbWFzcyBUb3duIENvbmNlcHQsIGlzIHVuZGVyIGNvbnNpZGVyYXRpb24uIEEgc2hpZnQgdG93YXJkcyBlbmVyZ3kgcG9saWNpZXMgZW1waGFzaXppbmcgdGhlIGVmZmVjdGl2ZSB1c2Ugb2YgbG9jYWwgcmVzb3VyY2VzIGlzIHVuZGVyd2F5LiAzLiBQRVQgQm90dGxlIFJlY3ljbGluZyBGYWNpbGl0eSAoTmFrYSBXYXJkLCBIaXJvc2hpbWEgQ2l0eSwgSGlyb3NoaW1hIFByZWZlY3R1cmUpIC0gMjAwNCBBIHJlY3ljbGluZyBmYWNpbGl0eSBmb3IgUEVUIGJvdHRsZXMgYW5kIHBsYXN0aWMgY29udGFpbmVycy9wYWNrYWdpbmcgaXMgYmVpbmcgZXN0YWJsaXNoZWQgd2l0aGluIHRoZSBNaXRzdWJpc2hpIEhlYXZ5IEluZHVzdHJpZXMgRWJhIFBsYW50IGluIE5ha2EgV2FyZCwgSGlyb3NoaW1hIENpdHkuIEZ1bmRlZCBieSB0aHJlZSBjb21wYW5pZXPigJRIaXJvc2hpbWEgUnlvanl1IEtvZ3lvLCBDaHVnb2t1IEVsZWN0cmljIFBvd2VyLCBhbmQgTksgRW52aXJvbm1lbnTigJRpdCBpcyBzY2hlZHVsZWQgdG8gY29tbWVuY2Ugb3BlcmF0aW9ucyBpbiBBcHJpbCAyMDA0LiBJdCBpcyBleHBlY3RlZCB0byBwcm9tb3RlIHJlc291cmNlIGNpcmN1bGF0aW9uLg==?=

1. Introduction of Industrial Waste Landfill Tax (Hiroshima Prefecture) - April 2003 Hiroshima Prefecture introduced a landfill tax in April 2003 to reduce industrial waste. Taxing ¥1,000 per ton, the first year's ¥700 million in tax revenue was deposited into the "Industrial Waste Reduction Fund," establishing a subsidy program for recycling technology development. Measures to encourage corporate waste reduction and lessen environmental impact are being advanced. 2. Reduction of the Eco-Town Project (Kitakyushu City, Fukuoka Prefecture) - 2003 Kitakyushu City had been implementing its Eco-Town Project since 1997, investing 28 billion yen in subsidies by fiscal year 2001. However, the subsidy was reduced in the fiscal year 2003 budget, and a new initiative, the Biomass Town Concept, is under consideration. A shift towards energy policies emphasizing the effective use of local resources is underway. 3. PET Bottle Recycling Facility (Naka Ward, Hiroshima City, Hiroshima Prefe
cture) - 2004 A recycling facility for PET bottles and plastic containers/packaging is being established within the Mitsubishi Heavy Industries Eba Plant in Naka Ward, Hiroshima City. Funded by three companies—Hiroshima Ryojyu Kogyo, Chugoku Electric Power, and NK Environment—it is scheduled to commence operations in April 2004. It is expected to promote resource circulation.

4. Recycling Port Plan (Kobe Port, Tokyo Port, Kitakyushu Port) - 2003 The Ministry of Land, Infrastructure, Transport and Tourism designated Kobe Port, Tokyo Port, and Kitakyushu Port as Recycling Ports, establishing them as maritime logistics hubs for waste and recyclable materials. Subsidies will be provided to private operators for recycling facility development, promoting the use of maritime transport for waste.

5. Waste Roof Tile Recycling Project (Fushimi Ward, Kyoto City, Kyoto Prefecture) - 2003 Kokuyo in Fushimi Ward, Kyoto City, operates a project recycling waste roof tiles for use as construction materials and road paving materials. These materials are attracting attention for their excellent permeability and water retention properties, contributing to reduced environmental impact.

6. Introduction of Forest Environment Tax (Kochi Prefecture) - April 2003 Kochi Prefecture introduced a Forest Environment Tax in April 2003 to fund forest conservation, levying ¥500 annually per resident. Projected revenue of ¥140 million will support forest conservation projects promoting mixed broadleaf and coniferous forests.

7. Waste Oil Diesel Fuel Demonstration Test (Asakita Ward, Hiroshima City, Hiroshima Prefecture) - April 2003 A demonstration test for manufacturing "Miracle Oil," a diesel fuel using waste oil, commenced in Asa Town, Asakita Ward, Hiroshima City. The method, using a special oxidizing agent, is attracting attention as a technology that does not generate secondary waste.

8. Wood Biomass Fuel Development (Fuchu City, Hiroshima Prefecture) - September 2002 Tromso in Fuchu City, Hiroshima Prefecture, developed manufacturing technology for "Karl Chip," a solid fuel using rice husks. Efforts are underway to accelerate the spread of biomass energy with this fuel, which offers high combustion efficiency and long-term storage capability.

9. Hyogo Prefecture's Eco-Town Plan (Kobe City, Hyogo Prefecture) - April 2003 Hyogo Prefecture is promoting an Eco-Town plan utilizing recycling boats. Efforts are underway to strengthen the resource circulation system by transporting waste materials by sea from areas like Osaka, Hiroshima, and Kagawa.

10. Water Quality Improvement and Emission Trading Scheme (Tokyo Bay Watershed) - 2000 An emission trading scheme targeting reductions in nitrogen and phosphorus inflow loads was introduced in the Tokyo Bay watershed. By 2000, reductions of 20% for nitrogen and 30% for phosphorus were confirmed. This economic approach to water pollution control is attracting attention.

1. 産業廃棄物埋立税の導入(広島県)-2003年4月

1. 産業廃棄物埋立税の導入(広島県)-2003年4月
広島県では、産業廃棄物の削減を目的とした埋立税を2003年4月から導入。1トンあたり1000円を課税し、初年度の税収7億円を「産廃抑制基金」に積み立て、リサイクル技術開発への助成制度を設立。企業の排出抑制を促し、環境負荷の軽減を図る施策が進められている。

2. エコタウン事業の縮小(福岡県北九州市)-2003年
北九州市では、1997年からエコタウン事業が展開され、2001年度までに280億円の補助金が投入された。しかし、2003年度予算では補助金が減少し、新たな事業としてバイオマスタウン構想が検討されている。地域資源の有効活用を重視したエネルギー政策への転換が進行中。

3. PETボトルリサイクル施設(広島県広島市中区)-2004年
広島市中区の三菱重工業江波工場内に、PETボトルやプラスチック製容器包装のリサイクル施設が設置される。広島菱重興産、中国電力、エヌケー環境の3社が出資し、2004年4月に事業開始予定。資源循環の促進が期待されている。

4. リサイクルポート計画(神戸港・東京港・北九州港)-2003年
国土交通省は神戸港・東京港・北九州港をリサイクルポートに指定し、廃棄物や資源化ごみの海上物流拠点とする方針。民間事業者のリサイクル施設整備に対する補助が行われ、廃棄物の海上輸送の活用が促進される。

5. 廃瓦リサイクル事業(京都府京都市伏見区)-2003年
京都市伏見区の國陽は、廃瓦をリサイクルし、建築材や道路舗装材として活用する事業を展開。透水性・保水性に優れた素材として注目されており、環境負荷の低減に貢献している。

6. 森林環境税の導入(高知県)-2003年4月
高知県では、森林保全のために森林環境税を2003年4月から導入し、県民一人当たり年間500円を徴収。税収は1億4000万円を見込み、広葉樹と針葉樹の混生林化を進める森林保全事業に活用される。

7. 廃油ディーゼル燃料実証試験(広島県広島市安佐北区)-2003年4月
広島市安佐北区阿佐町で、廃油を利用したディーゼル燃料「ミラクルオイル」の製造実証試験が開始。特殊酸化剤を用いた製法により、二次的廃棄物を発生させない技術として注目されている。

8. 木質バイオマス燃料の開発(広島県府中市)-2002年9月
広島県府中市のトロムソは、もみがらを利用した固形燃料「カールチップ」の製造技術を開発。燃焼効率が高く、長期保存が可能な燃料として、バイオマスエネルギーの普及を加速させる試みが進められている。

9. 兵庫県のエコタウン計画(兵庫県神戸市)-2003年4月
兵庫県では、リサイクルボートを活用したエコタウン計画を推進。大阪・広島・香川などから廃材を海上輸送し、資源循環システムを強化する取り組みが進められている。

10. 水質改善と排出枠取引制度(東京湾流域)-2000年
東京湾流域では、窒素やリンの流入負荷削減を目標とした排出枠取引が導入され、2000年時点で窒素20% リン30%の削減が確認された。水質汚染対策としての経済的手法として注目されている。

Dioxin Emission Manipulation - September 1999 In 1999, manipulation of dioxin emission data was uncovered at incineration facilities in Yokohama City, Osaka City, and Kawasaki City. At one facility, concentrations exceeding 10 nanograms—over 100 times the standard limit of 0.1 nanograms—were recorded, leading to severe air and soil contamination in the surrounding area. This was driven by the burden of equipment upgrade costs following stricter regulations introduced in 1997. The Ministry of the Environment investigated approximately 120 facilities nationwide and confirmed violations at 15%. At the Kawasaki City facility, it was found that filter replacements had been neglected.

Dioxin Emission Manipulation - September 1999 In 1999, manipulation of dioxin emission data was uncovered at incineration facilities in Yokohama City, Osaka City, and Kawasaki City. At one facility, concentrations exceeding 10 nanograms—over 100 times the standard limit of 0.1 nanograms—were recorded, leading to severe air and soil contamination in the surrounding area. This was driven by the burden of equipment upgrade costs following stricter regulations introduced in 1997. The Ministry of the Environment investigated approximately 120 facilities nationwide and confirmed violations at 15%. At the Kawasaki City facility, it was found that filter replacements had been neglected.

As countermeasures, high-temperature incineration technology developed by Ebara Corporation and Mitsubishi Heavy Industries was introduced, reducing emissions by up to 90% or more. Additionally, Kawasaki Heavy Industries' real-time emission monitoring system was adopted, contributing to ensuring data transparency and preventing fraud. This incident highlighted the importance of environmental technology and stricter regulations, promoting improvements in waste disposal systems.

ダイオキシン排出の不正操作-1999年9月

ダイオキシン排出の不正操作-1999年9月

1999年、横浜市、大阪市、川崎市の焼却施設で、ダイオキシン排出データの不正操作が発覚しました。ある施設では、基準値0.1ナノグラムの100倍以上である10ナノグラムを超える濃度が記録され、周辺の大気や土壌汚染が深刻化。背景には、1997年の規制強化による設備更新費用の負担がありました。環境省は全国約120施設を調査し、15%で基準違反を確認。特に川崎市の施設ではフィルター交換が怠られたことが原因と判明しました。

対策として、荏原製作所や三菱重工業が開発した高温焼却技術が導入され、排出量を最大90%以上削減。また、川崎重工業のリアルタイム排出モニタリングシステムが採用され、データの透明性確保や不正防止に貢献。この事件は、環境技術と規制強化の重要性を再認識させ、廃棄物処理体制の改善を促進しました。

Monday, January 26, 2026

=?UTF-8?B?QXVzdHJhbGlhJ3MgRHJvdWdodCBhbmQgQWdyaWN1bHR1cmFsIERhbWFnZSAoMjAwN+KAkzIwMjBzKSBBdXN0cmFsaWEgc3VmZmVyZWQgc2V2ZXJlIGRyb3VnaHRzIGZyb20gMjAwNyB0aHJvdWdoIHRoZSAyMDIwcy4gSW4gMjAwNywgd2hlYXQgcHJvZHVjdGlvbiBpbiBOZXcgU291dGggV2FsZXMsIFZpY3RvcmlhLCBhbmQgb3RoZXIgcmVnaW9ucyBmZWxsIGJ5IDQwJSB5ZWFyLW9uLXllYXIgdG8gYXBwcm94aW1hdGVseSAxMCwwMDAgdG9ucy4gVGhlIE11cnJheS1EYXJsaW5nIEJhc2luIGV4cGVyaWVuY2VkIHBlcnNpc3RlbnQgd2F0ZXIgc2hvcnRhZ2VzLCBsZWFkaW5nIHRvIHByb2dyZXNzaXZlIHNvaWwgc2FsaW5pemF0aW9uLiBUaGUgaW1wYWN0IGV4dGVuZGVkIHRvIGJlZWYgYW5kIGRhaXJ5IHByb2R1Y3RzLCB3aXRoIGNvbXBhbmllcyBsaWtlIEdyYWluQ29ycCBhbmQgRWxkZXJzIHN1ZmZlcmluZyBzaWduaWZpY2FudCBsb3NzZXMuIER1cmluZyB0aGUgMjAxMHMsIHJhaW5mYWxsIGZlbGwgYmVsb3cgaGFsZiBvZiBub3JtYWwgbGV2ZWxzLCBjYXVzaW5nIHRoZSAyMDE5IHdoZWF0IGhhcnZlc3QgdG8gZHJvcCB0byBhcHByb3hpbWF0ZWx5IDE1LDAwMCB0b25zLiBUaGUgZ292ZXJubWVudCBpbnZlc3RlZCBhcHByb3hpbWF0ZWx5IEFVRCAxMCBiaWxsaW9uIGluIHRoZSBGdXR1cmUgV2F0ZXIgUGxhbiwgc3VwcG9ydGluZyB0aGUgZGV2ZWxvcG1lbnQgb2YgZHJvdWdodC1yZXN pc3RhbnQgY3JvcHMgYW5kIHdhdGVyIHJlY3ljbGluZyB0ZWNobm9sb2dpZXMuIEJ5IDIwMjQsIGFubnVhbCByYWluZmFsbCBpbiBTb3V0aCBBdXN0cmFsaWEgaGFkIGRlY3JlYXNlZCB0byAxMDggbW0sIGxlYWRpbmcgdG8gcmVkdWNlZCBsaXZlc3RvY2sgcHJvZHVjdGlvbiBkdWUgdG8gcGFzdHVyZSBzaG9ydGFnZXMuIEdyYWluQ29ycCBhbmQgRWxkZXJzIGZhY2VkIHN1cHBseSBjaGFpbiBkaXNydXB0aW9ucy4gQXMgY2xpbWF0ZSBjaGFuZ2UgYWRhcHRhdGlvbiBnYWlucyBjcml0aWNhbCBpbXBvcnRhbmNlLCBmdXJ0aGVyIHRlY2hub2xvZ2ljYWwgaW5ub3ZhdGlvbiBpcyB1cmdlbnRseSBuZWVkZWQuIA==?=

Australia's Drought and Agricultural Damage (2007–2020s) Australia suffered severe droughts from 2007 through the 2020s. In 2007, wheat production in New South Wales, Victoria, and other regions fell by 40% year-on-year to approximately 10,000 tons. The Murray-Darling Basin experienced persistent water shortages, leading to progressive soil salinization. The impact extended to beef and dairy products, with companies like GrainCorp and Elders suffering significant losses. During the 2010s, rainfall fell below half of normal levels, causing the 2019 wheat harvest to drop to approximately 15,000 tons. The government invested approximately AUD 10 billion in the Future Water Plan, supporting the development of drought-resistant crops and water recycling technologies. By 2024, annual rainfall in South Australia had decreased to 108 mm, leading to reduced livestock production due to pasture shortages. GrainCorp and Elders faced supply chain disruptions. As climate change adaptatio
n gains critical importance, further technological innovation is urgently needed.

オーストラリアの干ばつと農業被害(2007年~2020年代)

オーストラリアの干ばつと農業被害(2007年~2020年代)
オーストラリアは2007年から2020年代にかけて、深刻な干ばつに見舞われました。2007年にはニューサウスウェールズ州やビクトリア州などで小麦の生産量が前年比40%減少し約10000トンに低下。マレー・ダーリング盆地では水不足が続き、土壌塩害が進行しました。影響は牛肉や乳製品にも及び、グレインコープ(GrainCorp)やエルダーズ(Elders)が多大な損害を受けました。2010年代には降水量が通常の半分以下となり、2019年の小麦収穫量は約15000トンに低下しました。政府は「未来の水計画」に約100億豪ドルを投資し、耐乾性作物や水リサイクル技術の開発を支援。2024年には南オーストラリア州で年間降水量が108mmに減少し、牧草不足により家畜生産が縮小。グレインコープとエルダーズは供給チェーンの混乱に直面しました。気候変動�
��の対応が重要視される中、さらなる技術革新が求められています。

Improper Disposal of Waste Plastics in Tsu City, Mie Prefecture - January 2011

Improper Disposal of Waste Plastics in Tsu City, Mie Prefecture - January 2011
Approximately 200 tons of waste plastic were improperly dumped in Tsu City, Mie Prefecture. Degradation of the plastic released harmful substances. Phthalate ester concentrations in the soil reached over twice the standard limit, raising concerns about contamination of surrounding farmland and water quality. Tsu City began removal operations in 2010, recovering about 140 tons. Removing the remaining approximately 60 tons requires a total of 80 million yen. One illegal dumping operator was prosecuted and fined 30 million yen. As countermeasures to prevent recurrence, 10 surveillance cameras were installed, 5,000 awareness posters were distributed, and explanatory meetings are held three times a year. These efforts resulted in a 25% decrease in illegal dumping incidents compared to the previous year. This issue highlights the importance of waste management and raising environmental awareness.

三重県津市における廃プラスチック不適正処理問題 - 2011年1月

三重県津市における廃プラスチック不適正処理問題 - 2011年1月
三重県津市で廃プラスチック約200トンが不適切に放置され、劣化により有害物質が発生。土壌中のフタル酸エステル濃度が基準値の2倍以上に達し、周辺農地や水質への汚染が懸念されています。津市は2010年から撤去作業を開始し、約140トンを回収。未処理分約60トンの撤去には総額8000万円が必要とされています。不法投棄業者1社が摘発され、罰金3000万円が科されました。再発防止策として、監視カメラ10台を設置し、啓発ポスター5000部を配布。説明会を年3回実施するなどの取り組みにより、不法投棄件数は前年比で25%減少しました。この問題は廃棄物管理と環境保護意識向上の重要性を示しています。